207 research outputs found

    The emergence of commercial genomics: analysis of the rise of a biotechnology subsector during the Human Genome Project, 1990 to 2004.

    Get PDF
    BackgroundDevelopment of the commercial genomics sector within the biotechnology industry relied heavily on the scientific commons, public funding, and technology transfer between academic and industrial research. This study tracks financial and intellectual property data on genomics firms from 1990 through 2004, thus following these firms as they emerged in the era of the Human Genome Project and through the 2000 to 2001 market bubble.MethodsA database was created based on an early survey of genomics firms, which was expanded using three web-based biotechnology services, scientific journals, and biotechnology trade and technical publications. Financial data for publicly traded firms was collected through the use of four databases specializing in firm financials. Patent searches were conducted using firm names in the US Patent and Trademark Office website search engine and the DNA Patent Database.ResultsA biotechnology subsector of genomics firms emerged in parallel to the publicly funded Human Genome Project. Trends among top firms show that hiring, capital improvement, and research and development expenditures continued to grow after a 2000 to 2001 bubble. The majority of firms are small businesses with great diversity in type of research and development, products, and services provided. Over half the public firms holding patents have the majority of their intellectual property portfolio in DNA-based patents.ConclusionsThese data allow estimates of investment, research and development expenditures, and jobs that paralleled the rise of genomics as a sector within biotechnology between 1990 and 2004

    The effects of business practices, licensing, and intellectual property on development and dissemination of the polymerase chain reaction: case study

    Get PDF
    INTRODUCTION: Polymerase chain reaction (PCR) was a seminal genomic technology discovered, developed, and patented in an industry setting. Since the first of its core patents expired in March, 2005, we are in a position to view the entire lifespan of the patent, examining how the intellectual property rights have impacted its use in the biomedical community. Given its essential role in the world of molecular biology and its commercial success, the technology can serve as a case study for evaluating the effects of patenting biological research tools on biomedical research. CASE DESCRIPTION: Following its discovery, the technique was subjected to two years of in-house development, during which issues of inventorship and publishing/patenting strategies caused friction between members of the development team. Some have feared that this delay impeded subsequent research and may have been due to trade secrecy or the desire for obtaining lucrative intellectual property rights. However, our analysis of the history indicates that the main reasons for the delay were benign and were primarily due to difficulties in perfecting the PCR technique. Following this initial development period, the technology was made widely available, but was subject to strict licensing terms and patent protection, leading to an extensive litigation history. DISCUSSION AND EVALUATION: PCR has earned approximately $2 billion in royalties for the various rights-holders while also becoming an essential research tool. However, using citation trend analysis, we are able to see that PCR's patented status did not preclude it from being adopted in a similar manner as other non-patented genomic research tools (specifically, pBR322 cloning vector and Maxam-Gilbert sequencing). CONCLUSION: Despite the heavy patent protection and rigid licensing schemes, PCR seems to have disseminated so widely because of the practices of the corporate entities which have controlled these patents, namely through the use of business partnerships and broad corporate licensing, adaptive licensing strategies, and a "rational forbearance" from suing researchers for patent infringement. While far from definitive, our analysis seems to suggest that, at least in the case of PCR, patenting of genomic research tools need not impede their dissemination, if the technology is made available through appropriate business practices

    The continuing saga of patents and non-invasive prenatal testing

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordObjective: This paper examines the IP landscape for NIPT in three key regions: USA; Europe, with particular focus on the UK, and Australia. Method: We explore the patent law issues against the commercial and healthcare environment in these regions, and consider the implications for development and implementation of NIPT. Results: There are many patents held by many parties internationally, with litigation over these patents ongoing in many countries. Importantly, there are significant international differences in patent law, with patents invalidated in the USA that remain valid in Europe. Despite the many patents and ongoing litigation, there are multiple providers of testing internationally, and patents do not appear to be preventing patient access to testing for those who can pay out of pocket. Conclusion: The patent situation in NIPT remains in a state of flux, with uncertainty about how patent rights will be conferred in different jurisdictions, and how patents might affect clinical access. However, patents are unlikely to result in a monopoly for a single provider, with several providers and testing technologies, including both public and private sector entities, likely to remain engaged in delivery of NIPT. However, the effects on access in public healthcare systems are more complex and need to be monitored.Economic and Social Research Council (ESRC)Australian Research CouncilNational Institute for Health Research (NIHR

    Sharing data to build a medical information commons: from Bermuda to the Global Alliance

    Get PDF
    The Human Genome Project modeled its open science ethos on nematode biology, most famously through daily release of DNA sequence data based on the 1996 Bermuda Principles. That open science philosophy persists, but daily, unfettered release of data has had to adapt to constraints occasioned by the use of data from individual people, broader use of data not only by scientists but also by clinicians and individuals, the global reach of genomic applications and diverse national privacy and research ethics laws, and the rising prominence of a diverse commercial genomics sector. The Global Alliance for Genomics and Health was established to enable the data sharing that is essential for making meaning of genomic variation. Data-sharing policies and practices will continue to evolve as researchers, health professionals, and individuals strive to construct a global medical and scientific information commons.Robert Cook-Deegan, Rachel A. Ankeny, and Kathryn Maxson Jone

    Generations of interdisciplinarity in bioinformatics

    Get PDF
    Bioinformatics, a specialism propelled into relevance by the Human Genome Project and the subsequent -omic turn in the life science, is an interdisciplinary field of research. Qualitative work on the disciplinary identities of bioinformaticians has revealed the tensions involved in work in this “borderland.” As part of our ongoing work on the emergence of bioinformatics, between 2010 and 2011, we conducted a survey of United Kingdom-based academic bioinformaticians. Building on insights drawn from our fieldwork over the past decade, we present results from this survey relevant to a discussion of disciplinary generation and stabilization. Not only is there evidence of an attitudinal divide between the different disciplinary cultures that make up bioinformatics, but there are distinctions between the forerunners, founders and the followers; as inter/disciplines mature, they face challenges that are both inter-disciplinary and inter-generational in nature

    Balancing openness with Indigenous data sovereignty: An opportunity to leave no one behind in the journey to sequence all of life

    Get PDF
    The field of genomics has benefited greatly from its "openness" approach to data sharing. However, with the increasing volume of sequence information being created and stored and the growing number of international genomics efforts, the equity of openness is under question. The United Nations Convention of Biodiversity aims to develop and adopt a standard policy on access and benefit-sharing for sequence information across signatory parties. This standardization will have profound implications on genomics research, requiring a new definition of open data sharing. The redefinition of openness is not unwarranted, as its limitations have unintentionally introduced barriers of engagement to some, including Indigenous Peoples. This commentary provides an insight into the key challenges of openness faced by the researchers who aspire to protect and conserve global biodiversity, including Indigenous flora and fauna, and presents immediate, practical solutions that, if implemented, will equip the genomics community with both the diversity and inclusivity required to respectfully protect global biodiversity

    Trends in utilization and costs of BRCA testing among women aged 18–64 years in the United States, 2003–2014

    Get PDF
    Purpose We examined 12-year trends in BRCA testing rates and costs in the context of clinical guidelines, national policies, and other factors. Methods We estimated trends in BRCA testing rates and costs from 2003 to 2014 for women aged 18–64 years using private claims data and publicly reported revenues from the primary BRCA testing provider. Results The percentage of women with zero out-of-pocket payments for BRCA testing increased during 2013–2014, after 7 years of general decline, coinciding with a clarification of Affordable Care Act coverage of BRCA genetic testing. Beginning in 2007, family history accounted for an increasing proportion of women with BRCA tests compared with personal history, coinciding with BRCA testing guidelines for primary care settings and direct-to-consumer advertising campaigns. During 2013–2014, BRCA testing rates based on claims grew at a faster rate than revenues, following 3 years of similar growth, consistent with increased marketplace competition. In 2013, BRCA testing rates based on claims increased 57%, compared with 11% average annual increases over the preceding 3 years, coinciding with celebrity publicity. Conclusion The observed trends in BRCA testing rates and costs are consistent with possible effects of several factors, including the Affordable Care Act, clinical guidelines and celebrity publicity

    Inscribing a discipline: tensions in the field of bioinformatics

    Get PDF
    Bioinformatics, the application of computer science to biological problems, is a central feature of post-genomic science which grew rapidly during the 1990s and 2000s. Post-genomic science is often high-throughput, involving the mass production of inscriptions [Latour and Woolgar (1986), Laboratory Life: the Construction of Scientific Facts. Princeton, NJ: Princeton University Press]. In order to render these mass inscriptions comprehensible, bioinformatic techniques are employed, with bioinformaticians producing what we call secondary inscriptions. However, despite bioinformaticians being highly skilled and credentialed scientists, the field struggles to develop disciplinary coherence. This paper describes two tensions militating against disciplinary coherence. The first arises from the fact that bioinformaticians as producers of secondary inscriptions are often institutionally dependent, subordinate even, to biologists. With bioinformatics positioned as service, it cannot determine its own boundaries but has them imposed from the outside. The second tension is a result of the interdisciplinary origin of bioinformatics – computer science and biology are disciplines with very different cultures, values and products. The paper uses interview data from two different UK projects to describe and examine these tensions by commenting on Calvert's [(2010) “Systems Biology, Interdisciplinarity and Disciplinary Identity.” In Collaboration in the New Life Sciences, edited by J. N. Parker, N. Vermeulen and B. Penders, 201–219. Farnham: Ashgate] notion of individual and collaborative interdisciplinarity and McNally's [(2008) “Sociomics: CESAGen Multidisciplinary Workshop on the Transformation of Knowledge Production in the Biosciences, and its Consequences.” Proteomics 8: 222–224] distinction between “black box optimists” and “black box pessimists.
    • 

    corecore