392 research outputs found

    Performance of the Abbott SARS-CoV-2 IgG II quantitative antibody assay including the new Variants of Concern, VOC 202012/V1 (United Kingdom) and VOC 202012/V2 (South Africa), and first steps towards global harmonization of COVID-19 antibody methods

    Get PDF
    In the initial stages of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, a plethora of new serology tests were developed and introduced to the global market. Many were not evaluated rigorously, and there is a significant lack of concordance in results across methods. To enable meaningful clinical decisions to be made, robustly evaluated, quantitative serology methods are needed. These should be harmonized to a primary reference material, allowing for the comparison of trial data and improved clinical decision making. A comprehensive evaluation of the new Abbott IgG II anti-SARS-CoV-2 IgG method was undertaken using CLSI-based protocols. Two different candidate primary reference materials and verification panels were assessed with a goal to move toward harmonization. The Abbott IgG II method performed well across a wide range of parameters with excellent imprecision (,3.5%) and was linear throughout the positive range (tested to 38,365AU/ml). The sensitivity (based on $14-day post-positive reverse transcription-PCR [RT-PCR] samples) and specificity were 98.3% (90.6% to 100.0%) and 99.5% (97.1% to 100%), respectively. The candidate reference materials showed poor correlation across methods, with mixed responses noted in methods that use the spike protein versus the nucleocapsid proteins as their binding antigen. The Abbott IgG II anti-SARS-CoV-2 measurement appears to be the first linear method potentially capable of monitoring the immune response to natural infection, including from new emerging variants. The candidate reference materials assessed did not generate uniform results across several methods, and further steps are needed to enable the harmonization process

    Prospecting environmental mycobacteria: combined molecular approaches reveal unprecedented diversity

    Get PDF
    Background: Environmental mycobacteria (EM) include species commonly found in various terrestrial and aquatic environments, encompassing animal and human pathogens in addition to saprophytes. Approximately 150 EM species can be separated into fast and slow growers based on sequence and copy number differences of their 16S rRNA genes. Cultivation methods are not appropriate for diversity studies; few studies have investigated EM diversity in soil despite their importance as potential reservoirs of pathogens and their hypothesized role in masking or blocking M. bovis BCG vaccine. Methods: We report here the development, optimization and validation of molecular assays targeting the 16S rRNA gene to assess diversity and prevalence of fast and slow growing EM in representative soils from semi tropical and temperate areas. New primer sets were designed also to target uniquely slow growing mycobacteria and used with PCR-DGGE, tag-encoded Titanium amplicon pyrosequencing and quantitative PCR. Results: PCR-DGGE and pyrosequencing provided a consensus of EM diversity; for example, a high abundance of pyrosequencing reads and DGGE bands corresponded to M. moriokaense, M. colombiense and M. riyadhense. As expected pyrosequencing provided more comprehensive information; additional prevalent species included M. chlorophenolicum, M. neglectum, M. gordonae, M. aemonae. Prevalence of the total Mycobacterium genus in the soil samples ranged from 2.3×107 to 2.7×108 gene targets g−1; slow growers prevalence from 2.9×105 to 1.2×107 cells g−1. Conclusions: This combined molecular approach enabled an unprecedented qualitative and quantitative assessment of EM across soil samples. Good concordance was found between methods and the bioinformatics analysis was validated by random resampling. Sequences from most pathogenic groups associated with slow growth were identified in extenso in all soils tested with a specific assay, allowing to unmask them from the Mycobacterium whole genus, in which, as minority members, they would have remained undetected

    The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus

    Get PDF
    The frequency of antifungal resistance, particularly to the azole class of ergosterol biosynthetic inhibitors, is a growing global health problem. Survival rates for those infected with resistant isolates are exceptionally low. Beyond modification of the drug target, our understanding of the molecular basis of azole resistance in the fungal pathogen Aspergillus fumigatus is limited. We reasoned that clinically relevant antifungal resistance could derive from transcriptional rewiring, promoting drug resistance without concomitant reductions in pathogenicity. Here we report a genome-wide annotation of transcriptional regulators in A. fumigatus and construction of a library of 484 transcription factor null mutants. We identify 12 regulators that have a demonstrable role in itraconazole susceptibility and show that loss of the negative cofactor 2 complex leads to resistance, not only to the azoles but also the salvage therapeutics amphotericin B and terbinafine without significantly affecting pathogenicity

    SARS-CoV-2 antibody trajectories after a single COVID-19 vaccination with and without prior infection

    Get PDF
    Given high SARS-CoV-2 incidence, coupled with slow and inequitable vaccine roll-out in many settings, there is a need for evidence to underpin optimum vaccine deployment, aiming to maximise global population immunity. We evaluate whether a single vaccination in individuals who have already been infected with SARS-CoV-2 generates similar initial and subsequent antibody responses to two vaccinations in those without prior infection. We compared anti-spike IgG antibody responses after a single vaccination with ChAdOx1, BNT162b2, or mRNA-1273 SARS-CoV-2 vaccines in the COVID-19 Infection Survey in the UK general population. In 100,849 adults median (50 (IQR: 37–63) years) receiving at least one vaccination, 13,404 (13.3%) had serological/PCR evidence of prior infection. Prior infection significantly boosted antibody responses, producing higher peak levels and/or longer half-lives after one dose of all three vaccines than those without prior infection receiving one or two vaccinations. In those with prior infection, the median time above the positivity threshold was >1 year after the first vaccination. Single-dose vaccination targeted to those previously infected may provide at least as good protection to two-dose vaccination among those without previous infection

    Air Quality Forecasts Using the NASA GEOS Model: A Unified Tool from Local to Global Scales

    Get PDF
    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (approximately 25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields

    A social-ecological-technological systems framework for urban ecosystem services

    Get PDF
    As rates of urbanization and climatic change soar, decision-makers are increasingly challenged to provide innovative solutions that simultaneously address climate change impacts and risks and inclusively ensure quality of life for urban residents. Cities have turned to nature-based solutions to help address these challenges. Nature-based solutions, through the provision of ecosystem services, can yield numerous benefits for people and address multiple challenges simultaneously. Yet, efforts to mainstream nature-based solutions are impaired by the complexity of the interacting social, ecological, and technological dimensions of urban systems. This complexity must be understood and managed to ensure ecosystem-service provisioning is effective, equitable, and resilient. Here, we provide a social-ecological-technological system (SETS) framework that builds on decades of urban ecosystem services research to better understand four core challenges associated with urban nature-based solutions: multi-functionality, systemic valuation, scale mismatch of ecosystem services, and inequity and injustice. The framework illustrates the importance of coordinating natural, technological, and socio-economic systems when designing, planning, and managing urban nature-based solutions to enable optimal social-ecological outcomes

    The Mechanism of Substrate Inhibition in Human Indoleamine 2,3-Dioxygenase

    Get PDF
    Indoleamine 2,3-dioxygenase catalyzes the O(2)-dependent oxidation of L-tryptophan (L-Trp) to N-formylkynurenine (NFK) as part of the kynurenine pathway. Inhibition of enzyme activity at high L-Trp concentrations was first noted more than 30 years ago, but the mechanism of inhibition has not been established. Using a combination of kinetic and reduction potential measurements, we present evidence showing that inhibition of enzyme activity in human indoleamine 2,3-dioxygenase (hIDO) and a number of site-directed variants during turnover with L-tryptophan (L-Trp) can be accounted for by the sequential, ordered binding of O(2) and L-Trp. Analysis of the data shows that at low concentrations of L-Trp, O(2) binds first followed by the binding of L-Trp; at higher concentrations of L-Trp, the order of binding is reversed. In addition, we show that the heme reduction potential (E(m)(0)) has a regulatory role in controlling the overall rate of catalysis (and hence the extent of inhibition) because there is a quantifiable correlation between E(m)(0) (that increases in the presence of L-Trp) and the rate constant for O(2) binding. This means that the initial formation of ferric superoxide (Fe(3+)-O(2)(•-)) from Fe(2+)-O(2) becomes thermodynamically less favorable as substrate binds, and we propose that it is the slowing down of this oxidation step at higher concentrations of substrate that is the origin of the inhibition. In contrast, we show that regeneration of the ferrous enzyme (and formation of NFK) in the final step of the mechanism, which formally requires reduction of the heme, is facilitated by the higher reduction potential in the substrate-bound enzyme and the two constants (k(cat) and E(m)(0)) are shown also to be correlated. Thus, the overall catalytic activity is balanced between the equal and opposite dependencies of the initial and final steps of the mechanism on the heme reduction potential. This tuning of the reduction potential provides a simple mechanism for regulation of the reactivity, which may be used more widely across this family of enzymes
    corecore