485 research outputs found

    Associations between social media, adolescent mental health, and diet: A systematic review

    Get PDF
    SummarySocial media use is integral to many adolescents' lives. It brings benefits but can also have detrimental effects on both physical and mental health. We conducted a systematic review examining associations between social media use, adolescent mental health (including body image, self‐esteem, stress, interpersonal relationships and loneliness, anxiety, and depressive symptoms), and dietary outcomes. Quantitative studies published between 2019 and 2023 investigating both mental health and diet were searched in 11 databases. The risk of bias was appraised using ROBINS‐E. Data were narratively synthesized by type of association, PROGRESS‐Plus health equity characteristics, and related to social media influencers. Twenty‐one studies were included, of which only one focused on influencers. Sex/gender was the only equity characteristic assessed (n = 8), with mixed results. The findings suggest significant positive correlations between social media use and both depressive and disordered eating symptoms, body dissatisfaction, and anxiety. Four studies identified body image, self‐esteem, or anxiety as moderators acting between social media exposure and dietary outcomes. Policy interventions mitigating the impact of social media on adolescents—particularly body image and disordered eating—are needed, alongside follow‐up studies on causal pathways, the role of influencers, equity impacts, dietary intake, and the best measurement tools to use.</jats:p

    Learning from the CO-CREATE project: A protocol for systems thinking across research (STAR).

    Get PDF
    The CO-CREATE project aimed to work with young people to create, inform, and disseminate obesity-preventive evidence-based policies using a complex systems perspective. This paper draws lessons from this experience and proposes a protocol for embedding systems thinking within a research project. We first draw on existing systems thinking frameworks to analyze how systems thinking was translated across CO-CREATE, including the flow and relationship between the work packages and in the methods used. We then take the lessons from CO-CREATE and the principles of existing systems thinking frameworks-which focus on various points of intervention planning and delivery but not on research projects as a whole-to formulate a protocol for embedding systems thinking across a research project. Key lessons for future planning and delivery of systems-oriented research projects include incorporating "boundary critique" by capturing key stakeholder (adolescent) values and concerns; working to avoid social exclusion; ensuring methodological pluralism to allow for reflection and responsiveness (with methods ranging from group model building, Photovoice, and small group engagement); getting policy recipients to shape key questions by understanding their views on the critical drivers of obesity early on in the project; and providing opportunity for intraproject reflection along the way

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb−1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval ∣y∣\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb−1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval ∣y∣\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb−1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval ∣y∣\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb−1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval ∣y∣\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Inclusive nonresonant multilepton probes of new phenomena at s\sqrt{s} = 13 TeV

    No full text
    An inclusive search for nonresonant signatures of beyond the standard model (SM) phenomena in events with three or more charged leptons, including hadronically decaying τ\tau leptons, is presented. The analysis is based on a data sample corresponding to an integrated luminosity of 138 fb−1^{-1} of proton-proton collisions at s\sqrt{s} = 13 TeV, collected by the CMS experiment at the LHC in 2016-2018. Events are categorized based on the lepton and b-tagged jet multiplicities and various kinematic variables. Three scenarios of physics beyond the SM are probed, and signal-specific boosted decision trees are used for enhancing sensitivity. No significant deviations from the background expectations are observed. Lower limits are set at 95% confidence level on the mass of type-III seesaw heavy fermions in the range 845-1065 GeV for various decay branching fraction combinations to SM leptons. Doublet and singlet vector-like τ\tau lepton extensions of the SM are excluded for masses below 1045 GeV and in the mass range 125-150 GeV, respectively. Scalar leptoquarks decaying exclusively to a top quark and a lepton are excluded below 1.12-1.42 TeV, depending on the lepton flavor. For the type-III seesaw as well as the vector-like doublet model, these constraints are the most stringent to date. For the vector-like singlet model, these are the first constraints from the LHC experiments. Detailed results are also presented to facilitate alternative theoretical interpretations
    • 

    corecore