13 research outputs found

    Transition from Cassie to Wenzel state in patterned soft elastomer sliding contacts

    Full text link
    In this paper, we presented an experimental and theoretical analysis of the formation of the contact between a smooth elastomer lens and an elastomer substrate micropatterned with hexagonal arrays of cylindrical pillars. We show using a JKR model coupled with a full description of the deformation of the substrate between the pillars that the transition between the top to the full contact is obtain when the normal load is increased above a well predicted threshold. We have also shown that above the onset of full contact, the evolution of the area of full contact was obeying a simple scaling.Comment: 4 pages, 6 figures. Submitte

    Dipolar self-potential anomaly associated with carbon dioxide and radon flux at Syabru-Bensi hot springs in central Nepal

    Get PDF
    International audienceThe Syabru-Bensi hot springs are located at the Main Central Thrust (MCT) zone in central Nepal. High carbon dioxide and radon exhalation fluxes (reaching 19 kg m À2 d À1 and 5 Bq m À2 s À1 , respectively) are associated with these hot springs, making this site a promising case to study the relationship between self-potential and fluids (gas and water) exhalation along a fault zone. A high-resolution self-potential map, covering an area of 100 m by 150 m that surrounds the main gas and water discharge spots, exhibits a dipolar self-potential anomaly with a negative peak reaching À180 mV at the main gas discharge spot. The positive lobe of the anomaly reaching 120 mV is located along the terraces above the main gas and water discharge spots. Several electrical resistivity tomograms were performed in this area. The resistivity tomogram crossing the degassing area shows a dipping resistive channel interpreted as a fracture zone channeling the gas and the hot water. We propose a numerical finite difference model to simulate the flow pattern in this area with the constraints imposed by the electrical resistivity tomograms, the self-potential data, the position of the gas vents, and hot water discharge area. This study provides insights on the generation of electrical currents associated with geothermal circulation in a geodynamically active area, a necessary prerequisite to study, using self-potentials, a possible modulation of the geothermal circulation by tectonic activity. Citation: Byrdina, S., et al. (2009), Dipolar self-potential anomaly associated with carbon dioxide and radon flux at Syabru-Bensi hot springs in central Nepal

    High carbon dioxide flux associated with radon-222 gas exhalation and dipolar self-potential anomaly at the Syabru-Bensi hot springs in central Nepal

    No full text
    Gas discharges have been identified at the Syabru-Bensi hot springs, located at the Main Central Thrust zone in Central Nepal and characterized by a water temperature reaching 61°C, high salinity and high alkalinity. The gas is mainly dry carbon dioxide, marked by a δ13C isotopic anomaly of -0.8‰. The diffuse carbon dioxide exhalation flux, mapped by the accumulation chamber method, reaches 19 000 g×m-2×day-1, comparable with values measured on active volcanoes. Radon exhalation flux at the soil surface has been measured at more than sixty points in the vicinity of the main gas discharge. Extreme values, larger than 2 Bq×m-2×s-1, similar to peak values measured in volcanic areas or above uranium waste piles, are observed in association with the larger values of the carbon dioxide exhalation flux. This high radon exhalation thus results from emanation at depth, producing a radon concentration in the pore space varying from 25 000 to more than 50 000 Bq×m-3, transported to the surface by the flow of carbon dioxide. The high radon-222 content of the carbon dioxide offers an interesting tracing method and an additional practical tool for long term monitoring, for example to study transient changes preceding large earthquakes. An extended dipolar self-potential anomaly has also been found, with a negative pole reaching -180 mV at the main gas discharge, and a wide positive lobe on the terrace above. This dipolar anomaly, the largest reported so far, is interpreted in a hydroelectrical numerical model assuming a primary upward fluid flow associated with the gas, coupled with a secondary flow towards the springs, taking into account the resistivity structure obtained from profiles of electrical resistivity tomography. Thus, the Syabru-Bensi hot springs provide a unique opportunity to study the generation of electrical currents associated with biphasic fluid flow in a geodynamically active area. A pilot multidisciplinary team has now undertaken a multidisciplinary study of the geological, geophysical and geochemical properties of the Syabru-Bensi geothermal system. Studying the spatial and temporal variations of the gas discharges and the associated properties of the hot springs may lead to important clues on the presence and displacements of crustal fluids in relation with the nucleation of large earthquakes in the Nepal Himalayas
    corecore