24 research outputs found

    Temporal Migration Patterns Between Natal Locations of Ruby-Throated Hummingbirds (\u3ci\u3eArchilochus colubris\u3c/i\u3e) and Their Gulf Coast Stopover Site

    Get PDF
    Background Autumn latitudinal migrations generally exhibit one of two different temporal migration patterns: type 1 where southern populations migrate south before northern populations, or type 2 where northern populations overtake southern populations en route. The ruby-throated hummingbird (Archilochus colubris) is a species with an expansive breeding range, which allows opportunities to examine variation in the timing of migration. Our objective was to determine a relationship between natal origin of ruby-throated hummingbirds and arrival at a Gulf coast stopover site; and if so, what factors, such as differences in body size across the range as well as the cost of migration, might drive such a pattern. To carry out our objectives, we captured hummingbirds at a coastal stopover site during autumn migration, at which time we collected feathers from juveniles for analysis of hydrogen stable isotopes. Using the hydrogen stable isotope gradient of precipitation across North America and published hydrogen isotope values of feathers from populations of breeding ruby-throated hummingbirds, we assigned migrants to probable natal latitudes. Results Our results confirm that individuals from across the range (30ā€“50Ā° N) stopover along the Gulf of Mexico and there is a positive relationship between arrival day and latitude, suggesting a type 1 migration pattern. We also found no relationship between fuel load (proxy for migration cost) or fat-free body mass (proxy for body size) and natal latitude. Conclusions Our results, coupled with previous work on the spatial migration patterns of hummingbirds, show a type 1 chain migration pattern. While the mechanisms we tested do not seem to influence the evolution of migratory patterns, other factors such as resource availability may play a prominent role in the evolution of this migration system

    An unidentified TeV source in the vicinity of Cygnus OB2

    Get PDF
    Deep observation (āˆ¼113 hrs) of the Cygnus region at TeV energies using the HEGRA stereoscopic system of air Čerenkov telescopes has serendipitously revealed a signal positionally inside the core of the OB association Cygnus OB2, at the edge of the 95% error circle of the EGRET source 3EG J2033+4118, and āˆ¼0.5Ā° north of Cyg X-3. The source centre of gravity is RA Ī±J2000: 20hr32m07sĀ± 9.2statsĀ±2.2syss, Dec Ī“J2000: +41Ā°30ā€²30ā€³2.0statĀ±0.4ā€²sys. The source is steady, has a post-trial significance of +4.6Ļƒ, indication for extension with radius 5.6ā€² at the āˆ¼3Ļƒ level, and has a differential power-law flux with hard photon index of - 1.9 Ā± 0.3stat Ā± 0.3sys. The integral flux above 1 TeV amounts āˆ¼3% that of the Crab. No counterpart for the TeV source at other wavelengths is presently identified, and its extension would disfavour an exclusive pulsar or AGN origin. If associated with Cygnus OB2, this dense concentration of young, massive stars provides an environment conducive to multi-TeV particle acceleration and likely subsequent interaction with a nearby gas cloud. Alternatively, one could envisage Ī³-ray production via a jet-driven termination shock.F. A. Aharonian, ... G. P. Rowell, ... [et al

    Varying dataset resolution alters predictive accuracy of spatially explicit ensemble models for avian species distribution

    Get PDF
    Species distribution models can be made more accurate by use of new ā€œSpatiotemporal Exploratory Modelsā€ (STEMs), a type of spatially explicit ensemble model (SEEM) developed at the continental scale that averages regional models pixel by pixel. Although SEEMs can generate more accurate predictions of species distributions, they are computationally expensive. We compared the accuracies of each model for 11 grassland bird species and examined whether they improve accuracy at a statewide scale for fine and coarse predictor resolutions. We used a combination of survey data and citizen science data for 11 grassland bird species in Oklahoma to test a spatially explicit ensemble model at a smaller scale for its effects on accuracy of current models. We found that only four species performed best with either a statewide model or SEEM; the most accurate model for the remaining seven species varied with data resolution and performance measure. Policy implications: Determination of nonheterogeneity may depend on the spatial resolution of the examined dataset. Managers should be cautious if any regional differences are expected when developing policy from rangeā€wide results that show a single model or timeframe. We recommend use of standard species distribution models or other types of nonspatially explicit ensemble models for local species prediction models. Further study is necessary to understand at what point SEEMs become necessary with varying dataset resolutions.Article processing charges funded by University of Oklahoma Libraries. This work was funded by U.S. Department of Agriculture (USDA) NIFA grant 2013ā€67009ā€20369 to ESB and supported by the AWS Cloud Credits for Research program. CMC was supported by National Science Foundation (NSF) grants IDBR 1014891 and ABI 1458402 to ESB and Oklahoma Department of Wildlife Conservation grant F17AF01294 (Wā€194ā€Rā€1) to M.A. Patten. AJC was supported by NSF grants IDBR 1014891, DGE 1545261, and DEB 0946685 and by USDA grant NIFAā€AFRIā€003536. Additional support was provided by the University Strategic Organization in "Applied Aeroecology" at the University of Oklahoma.Ye

    Examination of Clock and Adcyap1 gene variation in a neotropical migratory passerine

    Get PDF
    Complex behavioral traits, such as those making up a migratory phenotype, are regulated by multiple environmental factors and multiple genes. We investigated possible relationships between microsatellite variation at two candidate genes implicated in the control of migratory behavior, Clock and Adcyap1, and several aspects of migratory life-history and evolutionary divergence in the Painted Bunting (Passerina ciris), a species that shows wide variation in migratory and molting strategies across a disjunct distribution. We focused on Clock and Adcyap1 microsatellite variation across three Painted Bunting populations in Oklahoma, Louisiana, and North Carolina, and for the Oklahoma breeding population we used published migration tracking data on adult males to explore phenotypic variation in individual migratory behavior. We found no correlation between microsatellite allele size within either Clock and Adcyap1 relative to the initiation or duration of fall migration in adult males breeding in Oklahoma. We also show the lack of significant correlations with aspects of the migratory phenotype for the Louisiana population. Our research highlights the limitations of studying microsatellite allelic mutations that are of undetermined functional influence relative to complex behavioral phenotypes.This research was funded by the National Science Foundation (grants nos. IDBR 1014891 and DEB 0946685) and by the United States Department of Agriculture (grant no. NIFA-AFRI-003536). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.YesEach submission to PLOS ONE passes through a rigorous quality control and peer-review evaluation process before receiving a decision. The initial in-house quality control check deals with issues such as competing interests; ethical requirements for studies involving human participants or animals; financial disclosures; full compliance with PLOSā€™ data availability policy, etc. Submissions may be returned to authors for queries, and will not be seen by our Editorial Board or peer reviewers until they pass this quality control check. Once each manuscript has passed quality control, it is assigned to a member of the Editorial Board, who takes responsibility as the Academic Editor for the submission. The Academic Editor is responsible for conducting the peer-review process and for making a decision to accept, invite revision of, or reject the article

    Causes of bimodal stable isotope signatures in the feathers of a molt-migrant songbird

    No full text

    Optimizing stable isotope sampling design in terrestrial movement ecology research

    No full text
    The recognition of adequate sampling designs is an interdisciplinary topic that has gained popularity over the last decades. In ecology, many research questions involve sampling across extensive and complex environmental gradients. This is the case for stable isotope analyses, which are widely used to characterize large-scale movement patterns and dietary preferences of organisms across taxa. Because natural-abundance stable isotope variation in the environment is incorporated into inert animal tissues, such as feathers or hair, it is possible to draw inferences about the type of food and water resources that individuals consumed and the locations where tissues were synthesized. However, modern stable isotope research can benefit from the implementation of robust statistical analyses and well-designed sampling approaches to improve geographic assignment interpretation. We employed hydrogen stable isotope simulations to study inferences regarding the probability of origin of migratory individuals and reveal gaps in sampling efforts while highlighting uncertainties of assignment model extrapolations. We present an integrative approach that explores multiple sampling strategies across species with different geographic ranges to understand advantages and limitations of animal movement inferences based on stable isotope data. We show the characteristics of different sampling strategies through geographic and isotopic gradients and establish a set of diagnostic tools that uncover the attributes of these gradients and evaluate uncertainties of model results. Our analysis demonstrates that sampling regimes should be evaluated in relation to specific research questions and study constraints, and that adopting a single method across species ranges can lead to a costly but less effective sampling strategy

    Data from: Varying dataset resolution alters predictive accuracy of spatially explicit ensemble models for avian species distribution

    No full text
    Species distribution models can be made more accurate by use of new ā€œSpatiotemporal Exploratory Modelsā€ (STEMs), a type of spatially explicit ensemble model (SEEM) developed at the continental scale that averages regional models pixel by pixel. Although SEEMs can generate more accurate predictions of species distributions, they are computationally expensive. We compared the accuracies of each model for 11 grassland bird species, and examined whether they improve accuracy at a statewide scale for fine and coarse predictor resolutions. We used a combination of survey data and citizen science data for 11 grassland bird species in Oklahoma to test a spatially explicit ensemble model at a smaller scale for its effects on accuracy of current models. We found that only four species performed best with either a statewide model or SEEM; the most accurate model for the remaining seven species varied with data resolution and performance measure. Policy implications: Determination of non-heterogeneity may depend on the spatial resolution of the examined dataset. Managers should be cautious if any regional differences are expected when developing policy from rangewide results that show a single model or timeframe. We recommend use of standard species distribution models or other types of non-spatially explicit ensemble models for local species prediction models. Further study is necessary to understand at what point SEEMs become necessary with varying dataset resolutions

    Data From: Dynamic environments generate geographic fluctuations in population structure of an inland shorebird

    No full text
    <p>Data From: Dynamic environments generate geographic fluctuations in population structure of an inland shorebird. Table S1. Samples IDs, age class (adult = after hatch year; AHY) and young (juvenile = hatch year; HY), Ī“Ā²H values from feathers, and year of collection at the wintering ground (Imperial County, California, USA).</p&gt
    corecore