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1  | INTRODUC TION

Species distribution modeling (SDM) is a tool that uses envi‐
ronmental and geographic variables to predict what areas are 
suitable for a species and to better understand what factors con‐
strain species’ ranges (Elith & Leathwick, 2009). SDM can also be 
used to predict potential impacts of climate and land use change 
(Beaumont, Pitman, Poulsen, & Hughes, 2007; Lipsey et al., 2015). 

Newer regression and machine learning techniques incorporated 
into SDM continue to increase prediction accuracy (Cutler et al., 
2007; Elith, Leathwick, & Hastie, 2008; Elith et al., 2006; Lorena 
et al., 2011; Phillips, Dudík, & Schapire, 2004). One such method, 
Spatiotemporal Exploratory Modeling (STEM), has recently been 
introduced as a means of coping with variation in regional drivers. 
STEM uses smaller, overlapping subsets of data to generate re‐
gional predictions that are combined into an average (Fink et al., 
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Abstract
Species distribution models can be made more accurate by use of new “Spatiotemporal 
Exploratory Models” (STEMs), a type of spatially explicit ensemble model (SEEM) de‐
veloped at the continental scale that averages regional models pixel by pixel. Although 
SEEMs can generate more accurate predictions of species distributions, they are 
computationally expensive. We compared the accuracies of each model for 11 grass‐
land bird species and examined whether they improve accuracy at a statewide scale 
for fine and coarse predictor resolutions. We used a combination of survey data and 
citizen science data for 11 grassland bird species in Oklahoma to test a spatially ex‐
plicit ensemble model at a smaller scale for its effects on accuracy of current models. 
We found that only four species performed best with either a statewide model or 
SEEM; the most accurate model for the remaining seven species varied with data 
resolution and performance measure.

Policy implications: Determination of nonheterogeneity may depend on the spa‐
tial resolution of the examined dataset. Managers should be cautious if any regional 
differences are expected when developing policy from range‐wide results that show 
a single model or timeframe. We recommend use of standard species distribution 
models or other types of nonspatially explicit ensemble models for local species pre‐
diction models. Further study is necessary to understand at what point SEEMs be‐
come necessary with varying dataset resolutions.
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2010). This averaging of overlapping smaller models (the model 
type used here is referred to as the base model) allows the local 
models to correctly model predictor‐response relationships that 
may not occur in all parts of the study area, resulting in an overall 
map with more accurate predictions. The ensemble technique of 
combining overlapping predictions can be used with almost any 
model type (Fink et al., 2010; Fink, Damoulas, & Dave, 2013), 
and can cover continent‐ to hemisphere‐wide scales (Fink et al., 
2018, 2013). Unfortunately, these spatially explicit ensemble 
models (SEEMs) are computationally expensive, because instead 
of predicting just one map they must predict numerous support‐
ing maps followed by averaging them to create the final model. 
Additionally, the relative increase in accuracy has not been com‐
pared to the relative expense of computational time nor have 
SEEMs been tested at scales at which much species management 
occurs, such as state or regional initiatives (Brennan, Kuvlesky, & 
Morrison, 2005).

Spatiotemporal Exploratory Models have been developed for 
continental‐scale analyses because such a broad scale provides 
enough habitat and climate variation to require such a model. 
However, there are cases in which even a regional scale dataset 
can provide a wide range of bioclimatic heterogeneity relative to 
the study area, with variation in spatial and temporal processes 
at scales intermediate to the study area and predictor resolu‐
tion, and therefore, can be suitable for this application (Johnston 
et al., 2015; Zuckerberg, Fink, La Sorte, Hochachka, & Kelling, 
2016). The state of Oklahoma in the United States (US) provides 
such case because of its high biodiversity, ranking 9th for bird 
species richness, 15th for total species richness, and above the 
median in species richness for reptiles, amphibians, freshwater 
fish, vascular plants, and mammals in the United States. (Stein, 
2002). In particular, the grassland birds of Oklahoma inhabit 
diverse grassland types and climatic extremes. The open habi‐
tats of Oklahoma, which contains over a third of its land area as 
grasslands and an additional 15% as croplands (Diamond & Elliott, 
2015), contain grassland birds characteristic of habitats ranging 
from southeastern pine savannahs to tallgrass, mixed‐grass, and 
shortgrass prairies (Askins et al., 2007; Diamond & Elliott, 2015). 
Grassland species in areas half the size of Oklahoma in a single 
ecoregion have shown spatial and temporal differences in vari‐
able importance (Ethier, Koper, & Nudds, 2017). Forest species, 
which likewise occupy a single habitat type, also show spatial and 
temporal variation in predictor importance (Zuckerberg et al., 
2016). Similarly, such a technique has been used on shorebirds 
in habitats with structural similarity to grasslands at a statewide 
scale (Johnston et al., 2015). Finally, Oklahoma occurs on a strong 
east–west climatic gradient (Oklahoma Climatological Survey, 
2017) that has had profound impacts on the ecosystems of the 
region (Kukal & Irmak, 2016; Seager et al., 2018). Physiological 
balances in animals can change in importance with other environ‐
mental variables (Kearney, Simpson, Raubenheimer, & Kooijman, 
2013); therefore, variable importance may be expected to change 
for at least some species across climatic gradients. Oklahoma’s 

grassland habitats, agricultural importance, and susceptibil‐
ity to climate change (Loarie et al., 2009; National Assessment 
Synthesis Team (U.S.), 2001) make it an ideal and important re‐
gion to test relative efficacy of different methods for modeling 
species distributions.

Grasslands are one of the world’s most endangered ecosys‐
tems, with declines of 82.6%–99.9% of tallgrass prairie, 30%–
99.9% of mixed‐grass prairie, and 20%–85.8% of short‐grass 
prairie in the plains states and provinces of North America 
(Samson & Knopf, 1994), and as such could benefit from in‐
creased knowledge of distributional drivers. Drivers of decline 
include land use conversion via agriculture and changes in fire 
and grazing regimes (Samson, Knopf, & Ostlie, 2004), although 
specifics vary by region (Askins et al., 2007). The already tenu‐
ous status of grassland birds is further threatened by conversion 
to new crops resulting in permanent land use changes (Wright 
& Wimberly, 2013), generational changes in land use (Higgins, 
Naugle, & Forman, 2002), changes in conservation programs 
for grassland habitats (Klute, Robel, & Kemp, 1997), alterations 
to vegetation (Alward, 1999) and ecosystem structure (Brown, 
Valone, & Curtin, 1997; Hamer, Flather, & Noon, 2006), and cli‐
mate change (McCarty, 2001). Grassland bird species are declin‐
ing faster than other groups of birds (Askins et al., 2007; Hill, 
Egan, Stauffer, & Diefenbach, 2014; Knopf, 1994) and continue 
to be imperiled by ongoing and expanding threats to their habi‐
tat. Range‐wide species distribution predictions have been made 
for grassland birds but some species with smaller ranges are not 
accurately modeled (O’Connor, Jones, Boone, & Lauber, 1999), 
perhaps because some drivers of distribution vary regionally 
(Askins et al., 2007; Bakker, Naugle, & Higgins, 2002; Ethier et 
al., 2017), at a scale smaller than the study region. Additionally, 
spatial and temporal variation in habitat needs and selection 
pressures (Davis, 2005; Winter, Johnson, & Shaffer, 2005) or in‐
teractions with weather events (Pipher, Curry, & Koper, 2016) 
are known to be important in grassland birds; therefore, they are 
particularly suitable as a testing ground for a spatially explicit 
approach to modeling.

The objectives of our study were threefold. First, we estimated 
the distribution of Oklahoma grassland birds to understand current 
distribution statewide with standard species distribution modeling 
methods. Next, these statewide current distribution predictions 
allowed us to compare the statewide species distribution model 
for each species with SEEMs to evaluate whether this approach is 
suitable at the scale of our region. Finally, we compared each ap‐
proach’s accuracy when using fine‐ or coarse‐resolution predictor 
sets. Although our approach is at a smaller scale than originally 
envisioned for SEEMs, it is important to test their potential ap‐
plicability at the smaller scales at which most management deci‐
sions are made. Our results will allow others to make decisions on 
whether increased accuracy in modeling is worth the additional 
computational effort required by newer modeling techniques and 
provide guidance for future work into where given modeling ap‐
plications are useful.
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2  | METHODS

2.1 | Study area

Oklahoma contains diverse vegetation and climate, making it a 
suitable region to examine effects of spatially explicit models. 
There are ca. 165 vegetation types (based on soil and vegetation 
composition) in 15 land cover types (Diamond & Elliott, 2015), with 
over a third of the vegetation in grasslands. Rainfall and tempera‐
ture vary across the state (Oklahoma Climatological Survey, 2017), 
with annual precipitation ranging from ~43 cm of rain in the north‐
west to 142 cm in the southeast and mean annual temperature 
ranging from ~13°C in the northwest to ~17°C in the southeast. 
Summer temperatures over 32°C can occur from 60–115 days out 
of the year varying statewide. Agriculture in Oklahoma is domi‐
nated by livestock ranching and row crops (USDA/NASS, 2016) 
and accounted for over $2.8 billion of the state’s gross domestic 
product in the study years (US Bureau of Economic Analysis,2016); 
Oklahoma ranks in the top 5 of US acreage for grain wheat and 
forage land for hay (USDA/NASS, 2016).

2.2 | Bird surveys

We collected data 1–4 times each at 339 8‐min roadside point 
counts (0.13 hr) and at 87 nonroadside transects 0.3–3.1 hr and 
0.3–4.3 km long (mean±SD: 1.2 ± 0.6 hr and 1.8 ± 0.8 km). Each 
survey was conducted stationary (point counts) or walking at an 
even pace (transects). We had 14 observers total (6 in 2013 and 8 
in 2014). We only used sightings within 500 m of the observer to 
preserve identification accuracy and recognize that detection is 
imperfect; however, all models compared use similar data and as 
such it should not impact our comparison of models. A zero (ab‐
sence) or 1 (presence) was assigned for each combination of date 
and time and species. We focused on 10 species of grassland birds 
found during our general surveys [Northern Bobwhite (Colinus vir-
ginianus); Upland Sandpiper (Bartramia longicauda); Horned Lark 
(Eremophila alpestris); Cassin’s Sparrow (Peucaea cassinii); Field 
Sparrow (Spizella pusilla); Lark Sparrow (Chondestes grammacus); 

Grasshopper Sparrow (Ammodramus savannarum); Dickcissel (Spiza 
americana); Eastern Meadowlark (Sturnella magna); and Western 
Meadowlark (Sturnella neglecta)], plus the obligate brood parasite 
Brown‐headed Cowbirds (Molothrus ater) for which presence often 
depends on land use factors (Benson, Chiavacci, & Ward, 2013), 
for a total of 11 species. Many of these species are declining at the 
state or North American level; none are increasing in population 
(Sauer et al., 2017).

We supplemented our survey data for the 11 focal species with 
citizen science data from the eBird Reference Dataset (Munson et 
al., 2014) during the months of April, May, June, and July, to match 
the surveys we conducted. We used complete primary checklist data 
from 2013–2014 and excluded casual counts. Complete checklists 
contain all birds sighted by the observer; primary checklists are the 
main checklist submitted when more than one observer submitted 
checklists for the same observations. We restricted use of eBird 
samples to ≤4.3 km and ≤3.1 hr to be comparable to our surveys. We 
used the point count center or the transect midpoint as the count 
location for our surveys to have comparable precision to eBird co‐
ordinates (Fink et al., 2010). Likewise, because some eBird sightings 
will be from similar locations, we used all replicates of our point 
counts and transects. Because some of our observers entered sight‐
ings from before and during our surveys into eBird, we eliminated 14 
counts from 2013 and 2014 that were within two hours of the actual 
survey start time and within 15 km of the survey start location. The 
combined dataset contained 5,422 complete checklists (158 tran‐
sect sampling events, 613 point count sampling events, and 4,651 
eBird sampling events). Data points are shown in Figure 1.

To partition training and evaluation datasets, the combined data‐
set was split randomly for each species using the createDataParti‐
tion function in the CARET package (Kuhn, 2017), which samples 
such that both training and evaluation splits have similar distribu‐
tions of presence and absences.

2.3 | Predictors

We used bioclimatic variables from WorldClim at 30‐s resolution 
(Hijmans, Cameron, Parra, Jones, & Jarvis, 2005), conservation ease‐
ment status (O’Connor et al., 1999), and land cover variables (USDA/
NRCS ‐ National Geospatial Center of Excellence, 2011) to predict 
bird distribution (Table S1). We also included effort (length of obser‐
vation in distance and time) and time of day in the analysis to control 
for differences in bird activity and observer effort that may influ‐
ence species checklists. Neighborhood predictors were calculated 
by the values in rectangular areas around each point, at the scale of 
5 × 5 pixels (150 × 150 m) and 15 × 15 pixels (450 × 450 m) (Fink et 
al., 2010). Although the 15 × 15 pixel unit is smaller than our 500 m 
cutoff, most sightings are from even larger areas with the maximum 
length being under 4.3 km, an area comparable to Fink et al., 2010. 
Additionally, using a neighborhood value centered at the location 
point still provides information about the neighborhood, whether or 
not it overlaps or surrounds the sighting. We looked at proportion 
of each land cover class and proportion of summed open space land 

F I G U R E  1   The complete dataset used in this study from eBird 
and surveys by the authors in 2013 and 2014 in the central U.S. 
state of Oklahoma in the Great Plains. The dataset was sampled 
such that half each was used for model training and model 
evaluation
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covers (grasslands, hay/pasture, cropland, herbaceous wetlands, and 
barren land) since grassland bird occupancy can be influenced by the 
total nonstructural cover (McDonald, 2017). Neighborhoods were 
created in QGIS 2.16 with the GRASS r.neighbors processing tool 
(Quantum GIS Development Team, 2016).

We tested for the effects of using coarser (lower resolution) ras‐
ters to see if matching predictor and response variable scale affected 
accuracy. This is applicable as lowering raster resolution could be 
a route to making potentially more accurate models available to 
more researchers and managers. We scaled our previously created 
predictor rasters from their native or previously resampled 30 m 
resolution to the approximate scale of our largest response data res‐
olution, by decreasing cell size 144‐fold to 4.32 km using means in 
the “aggregate” function in the R package Raster (Hijmans, 2016). 
Using these coarser predictor sets trimmed, the 2013–2014 dataset 
slightly down to 5,327 checklists (2,664 for training and 2,663 for 
evaluation).

2.4 | Species distribution models

We ran models on Amazon Web Services (AWS) Elastic Cloud 
Computing (EC2) m4.4xlarge instances (16 vCPU and 64 GiB 
memory).

2.4.1 | Base model

To create all species distribution models, we used random forest re‐
gression trees (Breiman, 2001) in the R package randomForest (Liaw 
& Wiener, 2002). Random forest gives results competitive to those 
from other machine learning techniques such as boosted regression 
trees and bagged decision trees (used in Fink et al., 2010 for the 
nonspatially‐explicit comparison model). Minimal tuning parameters 
are required (Caruana & Niculescu‐Mizil, 2006; Cutler et al., 2007; 
Guo, Graber, McBurney, & Balasubramanian, 2010). Random Forests 
are suitable for species distribution models (Lorena et al., 2011; 
Prasad, Iverson, & Liaw, 2006) even with few presence records (Mi, 
Huettmann, Guo, Han, & Wen, 2017). The random forest algorithm 
bootstraps a subset of the data using only a set proportion of the 
predictor variables. It then calculates the error rate on training data 
using the “out of bag” sample (the portion of data not used in the 
bootstrap for each tree) (Hastie, Tibshirani, & Friedman, 2001). The 
trees are then averaged for a final model (Prasad et al., 2006). All 
random forests (both support set and statewide models) were gen‐
erated with 500 trees which are generally suitable to achieve stabil‐
ity and accuracy (Cutler et al., 2007). We used the default number of 
variables per bootstrap tree (default “mtry” = the square root of the 
number of predictor variables) for all trees because this is known to 
result in accurate predictions (Cutler et al., 2007).

Maps were created using the predict function in RASTER at the 
resolution of the original predictor datasets (30 m and 4.32 km). 
For the maps, we assumed a uniform effort and time of day by 
creating constants for prediction: mean effort (distance and time) 
and time of day rasters. Thus, all predicted distribution models are 

generated assuming survey effort does not vary geographically 
and survey effort is typical for both surveys and citizen science 
efforts in 2013 and 2014 (mean time: 0.73 hr; mean distance: 
0.75 km). The time of day raster for prediction was given a value 
of 7:00 a.m. (Fink et al., 2010). Prediction values for evaluation did 
not use these constants.

2.4.2 | Statewide and SEE models

We created four models for each species at varying spatial scales: a 
statewide model and three SEEMs. The statewide model allowed us 
to compare the performance to SEEMs. A random forest model was 
created for the statewide scale for each species using all training 
data. The three remaining models are at varying support set scales, 
with some modifications from Fink et al. (2010). First, the scale of 
our support sets reflects the state extent (i.e., our small, medium, 
and large scales are relatively smaller than those needed for a con‐
tinent‐wide scale). As our survey goals are to determine breeding 
distribution only, we used a broader temporal window (April‐July in 
all years) for our model. Secondly, for all base models, we used ran‐
dom forest classification trees (Breiman, 2001) as described above. 
Finally, our geographic sampling of the training and evaluation data‐
sets, described in more detail in the next paragraph, reflects the dif‐
fering nature of our base models. Fink et al. (2010) sampled 63% of 
each support set to imitate bootstrapping sampling, but we used the 
full data set for each support set region.

Building a SEEM consists of creating random support sets, gen‐
erating trees and predictions for each support set, and then, com‐
bining each support set model predictions into the final overall 
prediction. We created stratified random points in the study area 
to create support sets (Figure 2). The randomization of the support 
set center is important to fit ensemble models with low bias and high 
variance (Kuncheva & Whitaker, 2003). We used the “spsample” 
function from the R package SP (Bivand, Pebesma, & Gomez‐Rubio, 
2013; Pebesma & Bivand, 2005) and created squares of size small 
(100 boxes of 120 × 120 km), medium (37 boxes of 200 × 200 km), 
or large (12 boxes of 450 × 450 km) around these points, which re‐
sulted in no significant difference in pixel coverage (F2,147 = 0.63, 
p = 0.53; small mean: 6.9, median 7, range 2–10; medium mean: 6.3, 
median 7, range 2–11; large mean: 6.6, median 7, range 2–10) before 
removing support sets with too few (<25) or uniform (all presence 
or all absence) checklists (models cannot run with uniform values). 
Using a larger number of base model pixel coverage is ideal to reduce 
“blockiness” in final ensemble maps and prediction coverage, but we 
were limited by computational costs. Each support set included all 
checklists from the training dataset located within its boundaries. 
All remaining support set rasters for a given scale (small, medium, or 
large) were combined into one larger raster using the RASTER mo‐
saic() function to get the mean value of each pixel (ranging from 0 to 
1), creating the spatially explicit ensemble (Fink et al., 2010; Hastie et 
al., 2001; Oppel et al., 2012) made of regional random forest predic‐
tions. This process was repeated at the three spatial scales, resulting 
in three SEEMs per species.
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2.4.3 | Model evaluation and error

To evaluate model performance, we created a statewide grid of 
10 × 10 km cells and randomly sampled no more than 10 observa‐
tions from each grid cell for spatial uniformity (Fink et al., 2010) 
using the held back data. The actual presence or absence from each 
checklist is compared to predicted values at each cell with the date 
and time of the sighting (instead of the uniform date and time used 
to create the maps). These sampling grid cells are larger than either 
predictor size and are used to ensure that we do not weight the accu‐
racy of the models toward regions with more reports or surveys. We 
repeated the evaluation sampling 50 times to create a performance 
distribution for each model and error type (Fink et al., 2010). We 
noted the scale (small, medium, large, statewide) with best perfor‐
mance measures for each species and compared performance with 
notched box plots (Chambers, Cleveland, Kleiner, & Tukey, 1983).

Performance measures were root mean square error (RMSE) and 
area under the curve (AUC). RMSE is calculated from the model re‐
siduals, taking the squared value of observed minus expected val‐
ues, then taking the square root to return to original units; a larger 
value indicates the model deviates further from expected (Kuhn & 
Johnson, 2013). AUC is a summary of model performance measuring 
how often the model misclassifies individual test observations; AUC 
ranges from 0 to 1, with 1 being perfect and 0.5 being a model that 
performs no better than random chance (Hanley & McNeil, 1982; 
James, Witten, Hastie, & Tibshirani, 2013).

To compare computing efficiency, we used the R package 
MICROBENCHMARK to measure runtimes. All runtimes included 
randomForest trees and RASTER prediction; ensembles also in‐
cluded mosaic creation time. We compared runtimes with a ratio of 
scaled model runtime to statewide model runtime as computational 
times will differ by the user’s available machines.

3  | RESULTS

Current statewide distributions are shown in panel (a) of Figures 3‒6 
and Supporting information Figures S1–S7. SEEMs took 2.7–12.7 
times longer (with fine resolution predictors) or 2.6–22.7 times 
longer (with coarse resolution predictors) to run than a statewide 
model, depending on species.

Spatially explicit ensemble models outperformed statewide mod‐
els for only Northern Bobwhite and Western Meadowlark within 
each data resolution for both AUC (Figure 7) and RMSE (Figure 8). 
Statewide models outperformed or equaled SEEMs within each data 
resolution for Brown‐headed Cowbird and Dickcissel for both AUC 
and RMSE.

Coarse resolution models consistently outperformed fine reso‐
lution models in both AUC and RMSE for Dickcissel. Fine resolution 
models consistently outperformed coarse resolution models in both 
AUC and RMSE for Lark Sparrow, Grasshopper Sparrow, and Eastern 
Meadowlark.

The remaining species’ best model (statewide or a SEEM) dif‐
fered between resolutions or with choice of error evaluation.

4  | DISCUSSION

Although SEEMs increase model accuracy over continental scales 
(Fink et al., 2013, 2010), our study found their performance differed 
by species and predictor resolution even in a state with variable cli‐
mate and diverse ecoregions. Two species were often better repre‐
sented by SEEMs, suggesting their distributional processes may vary 
regionally. There were few obvious commonalities among these spe‐
cies that would lead to SEEMs being more accurate for them. One 
species is nonpasserine (Northern Bobwhite), and the other is a com‐
mon grassland passerine (Western Meadowlark). Two species were 
always better with statewide models (Brown‐headed Cowbird and 
Dickcissel). The cowbird is strongly dependent on habitat structure 
(Benson et al., 2013; Bernath‐Plaisted, Nenninger, & Koper, 2017), 
but these variables are not what is measured by the predictor layers 
that we used. Dickcissel is known for its semi‐nomadic movement 
patterns (Temple, 2017); as such, neither species may be as depend‐
ent on local climatic variation mapped by the BioClim predictor in‐
puts. The inconsistencies in the remainder of the species suggest 
that a larger sample of species and predictor resolutions is needed 
to compare why models are appropriate for given situations. On our 
original models, the predictors are consistently finer‐scaled (30 m) 
than some, but not all, response location data (ranging from exact 
point count locations to aggregate sightings along a 4.3 km transect). 
However, Fink et al. (2010) used transects almost twice as long as 

F I G U R E  2  Support sets of small (left), medium (middle), and large (right) scale overlaid over the study area of Oklahoma, USA



6  |     CURRY et al.

F I G U R E  3   Species distribution model for Northern Bobwhite generated at four scales (statewide and three spatially explicit ensemble 
models at large, medium, and small support set sizes) with 30 m resolution in Oklahoma. Color scale indicates probability of occurrence from 
0 to 1. Blank areas (in white within the state boundaries) were not able to calculate a model

UTM easting

U
TM

 n
or

th
in

g

3,800,000

3,900,000

4,000,000

4,100,000

200,000 400,000 600,000 800,000

Medium Large

0.0

0.2

0.4

0.6

0.8

1.0Statewide Small

F I G U R E  4   Species distribution model for Cassin's Sparrow generated at four scales (statewide and three spatially explicit ensemble 
models at large, medium, and small support set sizes) with 30 m resolution in Oklahoma. Color scale indicates probability of occurrence from 
0 to 1. Blank areas (in white within the state boundaries) were not able to calculate a model
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F I G U R E  5   Species distribution model for Western Meadowlark generated at four scales (statewide and three spatially explicit ensemble 
models at large, medium, and small support set sizes) with 30 m resolution in Oklahoma. Color scale indicates probability of occurrence from 
0 to1. Blank areas (in white within the state boundaries) were not able to calculate a model
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F I G U R E  6   Species distribution model for Brown‐headed Cowbird generated at four scales (statewide and three spatially explicit 
ensemble models at large, medium, and small support set sizes) with 30 m resolution in Oklahoma. Color scale indicates probability of 
occurrence from 0 to 1. Blank areas (in white within the state boundaries) were not able to calculate a model.
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F I G U R E  7   RMSE evaluations for all 44 models compared by predictor resolution. Each panel shows one species. Overlapping notches on 
boxplots show no difference; nonoverlapping notches show a significant difference in medians. Centerline represents median. Fine grid lines 
are shown to facilitate notch comparison
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F I G U R E  8  AUC evaluations for all 44 models compared by predictor resolution. Each panel shows one species. AUC = 0.5, where 
prediction is random, and above which prediction is better than random. We show the y‐axis as 1—AUC so that a lower value is better 
prediction to facilitate comparison with RMSE in Figure 7. Overlapping notches on boxplots show no difference; nonoverlapping notches 
show a significant difference in medians. Centerline represents median. Fine grid lines are shown to facilitate notch comparison
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ours (up to 8.1 vs. 4.3 km) with 30 m resolution predictor data, so 
that should not account for differences between our results.

A potential mechanism for variation between species includes 
whether species’ distributions depend more upon bioclimatic ver‐
sus ecological variables, as bioclimatic variables should change more 
smoothly over a larger area (potentially reducing the need for adap‐
tive local models). It could also be that species‐specific processes 
determine whether SEEMs are required. However, one benefit of 
random forest models and other machine learning methods is min‐
imal tuning and expert opinion required to generate an accurate 
map (Fink et al., 2010). Requiring researchers to choose spatial scale 
based on expert opinion of variable importance negates this benefit. 
However, the fact that most species showed different model perfor‐
mance based on whether we used fine or coarse predictor resolution 
suggests that model performance depends at least partially on data‐
set resolutions. Researchers who suspect that a SEE model is appro‐
priate for their dataset and system can compare a small number of 
base models for different regions or times and see if relationships 
vary among the test models.

An alternative approach for modelers seeking increased ac‐
curacy is the use of nonspatially explicit ensemble models, where 
different base models (predicting for the whole study area) are 
combined to produce a single prediction map (Araújo & New, 
2007; Oppel et al., 2012). We recommend this approach as more 
efficient for regional managers. Multiple maps will still be gener‐
ated for the whole study area (n = number of base models used), 
but typically fewer than the number of support sets created in a 
SEEM or STEM. These types of ensembles are known to increase 
accuracy relative to a single base model (Araujo & New 2007; 
Oppel et al., 2012). Although large‐scale solutions to conserve 
grasslands are needed (Samson et al., 2004), local and regional 
conservation and management efforts also have critical impacts 
(Brennan et al., 2005). We expected that SEEMs would be most 
accurate and therefore relevant to wildlife management in this 
state with diverse ecotypes that occur at scales larger than pre‐
dictors but smaller than our study region. However, based on 
our study, we recommend that when using a single base model 
type, all distribution model types should be run (statewide and 
at least one or more scales of SEEM) if computing capacity is 
available.

Accurate species distribution models can help us understand 
what factors, both environmental and land use, drive species de‐
clines (Elith & Leathwick, 2009), but we need to conduct model‐
ing with predictors and responses at the appropriate spatial scale. 
Further research is needed to elucidate at what study scale and data 
resolution SEEMs become appropriate. In fact, we found a mod‐
ern laptop or desktop unable to handle fine resolution SEEMs and 
turned to cloud computing to complete them, so the length of time 
and computing expense involved can be substantial. Coarser predic‐
tor models were much quicker to run (less than an hour of increase 
relative to statewide models on the high‐speed cloud computing), 
but they were still many times longer in runtime than the compara‐
ble statewide model. At the continental and temporally fine‐grained 

scales, Fink et al. (2010)’s result still stands; it is at intermediate 
scales where more research is needed.
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