7,339 research outputs found

    Homogenization in magnetic-shape-memory polymer composites

    Full text link
    Magnetic-shape-memory materials (e.g. specific NiMnGa alloys) react with a large change of shape to the presence of an external magnetic field. As an alternative for the difficult to manifacture single crystal of these alloys we study composite materials in which small magnetic-shape-memory particles are embedded in a polymer matrix. The macroscopic properties of the composite depend strongly on the geometry of the microstructure and on the characteristics of the particles and the polymer. We present a variational model based on micromagnetism and elasticity, and derive via homogenization an effective macroscopic model under the assumption that the microstructure is periodic. We then study numerically the resulting cell problem, and discuss the effect of the microstructure on the macroscopic material behavior. Our results may be used to optimize the shape of the particles and the microstructure.Comment: 17 pages, 4 figure

    Field Theoretical Description of Quantum Hall Edge Reconstruction

    Full text link
    We propose a generalization of the chiral Luttinger liquid theory to allow for a unified description of quantum Hall edges with or without edge reconstruction. Within this description edge reconstruction is found to be a quantum phase transition in the universality class of one-dimensional dilute Bose gas transition, whose critical behavior can be obtained exactly. At principal filling factors ν=1/m\nu=1/m, we show the additional edge modes due to edge reconstruction modifies the point contact tunneling exponent in the low energy limit, by a small and non-universal amount.Comment: 4 pages with 1 ps figure embedde

    Quasi-Lie schemes and Emden--Fowler equations

    Full text link
    The recently developed theory of quasi-Lie schemes is studied and applied to investigate several equations of Emden type and a scheme to deal with them and some of their generalisations is given. As a first result we obtain t-dependent constants of the motion for particular instances of Emden equations by means of some of their particular solutions. Previously known results are recovered from this new perspective. Finally some t-dependent constants of the motion for equations of Emden type satisfying certain conditions are recovered

    Genetic consequences of Quaternary climatic oscillations in the Himalayas: Primula tibetica as a case study based on restriction site-associated DNA sequencing.

    Get PDF
    The effects of Quaternary climatic oscillations on the demography of organisms vary across regions and continents. In taxa distributed in Europe and North America, several paradigms regarding the distribution of refugia have been identified. By contrast, less is known about the processes that shaped the species' spatial genetic structure in areas such as the Himalayas, which is considered a biodiversity hotspot. Here, we investigated the phylogeographic structure and population dynamics of Primula tibetica by combining genomic phylogeography and species distribution models (SDMs). Genomic data were obtained for 293 samples of P. tibetica using restriction site-associated DNA sequencing (RADseq). Ensemble SDMs were carried out to predict potential present and past distribution ranges. Four distinct lineages were identified. Approximate Bayesian computation analyses showed that each of them have experienced both expansions and bottlenecks since their divergence, which occurred during or across the Quaternary glacial cycles. The two lineages at both edges of the distribution were found to be more vulnerable and responded in different ways to past climatic changes. These results illustrate how past climatic changes affected the demographic history of Himalayan organisms. Our findings highlight the significance of combining genomic approaches with environmental data when evaluating the effects of past climatic changes

    The Ionized Stellar Wind in Vela X-1 During Eclipse

    Get PDF
    We present a first analysis of a high resolution X-ray spectrum of the ionized stellar wind of Vela X-1 during eclipse. The data were obtained with the High Energy Transmission Grating Spectrometer onboard the Chandra X-ray Observatory. The spectrum is resolved into emission lines with fluxes between 0.02 and 1.04x10^4 ph/cm^2/s. We identify lines from a variety of charge states, including fluorescence lines from cold material, a warm photoionized wind. We can exclude signatures from collisionally ionized plasmas. For the first time we identify fluorescence lines from L-shell ions from lower Z elements. We also detect radiative recombination continua from a kT = 10 eV (1.2 x 10^5 K) photoionized optically thin gas. The fluorescence line fluxes infer the existence of optically thick and clumped matter within or outside the warm photoionized plasma.Comment: 4 pages, 2 figures, accepted by ApJ letter

    Spectroscopic and physical parameters of Galactic O-type stars. I. Effects of rotation and spectral resolving power in the spectral classification of dwarfs and giants

    Full text link
    The modern-era spectral classification of O-stars relies on either the Walborn or the Conti-Mathys scheme. Since both of these approaches have been developed using low-quality photographic data, their application to high-quality digital data might not be straightforward and be hampered by problems and complications that have not yet been appreciated. Using high-resolution spectra obtained with the ESO/MPG 2.2\,m telescope in La Silla and following the premises of the Walborn and Conti classification schemes, we determined the spectral types and luminosity classes of 19 Galactic O-type stars and compared them to those attributed by Walborn and Mathys based on low-quality data. Our analysis reveals that the morphological spectral types assigned using high-resolution data are systematically later (by up to 1.5 subtypes) then those attributed by Walborn. By means of line-profile simulations, we show that part of this discrepancy is more likely caused by the combined effect of stellar rotation and high spectral resolution on the depth of helium lines used as spectral type indicators. In addition, we demonstrate that at least for narrow-lined stars the "rotational effect" does not disappear when the high-resolution spectra are degraded to the resolution of the Walborn standards. We also find evidence of a systematic difference between our high-resolution quantitative spectral types and those assigned by Mathys. Rotation and spectral resolution are important third parameters in the spectral classification of O-type stars. To obtain reliable spectral classes within the Walborn approach, the unknown and the standard spectra must be compared at the same resolution and \vsini. Owing to resolution effects, the Conti approach might also need to be updated.Comment: paper accepted for publication in A&

    Integrative metabolomics to identify molecular signatures of responses to vaccines and infections

    Get PDF
    Approaches to the identification of metabolites have progressed from early biochemical pathway evaluation to modern high-dimensional metabolomics, a powerful tool to identify and characterize biomarkers of health and disease. In addition to its relevance to classic metabolic diseases, metabolomics has been key to the emergence of immunometabolism, an important area of study, as leukocytes generate and are impacted by key metabolites important to innate and adaptive immunity. Herein, we discuss the metabolomic signatures and pathways perturbed by the activation of the human immune system during infection and vaccination. For example, infection induces changes in lipid (e.g., free fatty acids, sphingolipids, and lysophosphatidylcholines) and amino acid pathways (e.g., tryptophan, serine, and threonine), while vaccination can trigger changes in carbohydrate and bile acid pathways. Amino acid, carbohydrate, lipid, and nucleotide metabolism is relevant to immunity and is perturbed by both infections and vaccinations. Metabolomics holds substantial promise to provide fresh insight into the molecular mechanisms underlying the host immune response. Its integration with other systems biology platforms will enhance studies of human health and disease

    A Search for Wolf-Rayet Stars in the Small Magellanic Cloud

    Get PDF
    We conducted an extensive search for Wolf-Rayet stars (W-Rs) in the SMC, using the same interference filter imaging techniques that have proved successful in finding W-Rs in more distant members of the Local Group. Photometry of some 1.6 million stellar images resulted in some 20 good candidates, which we then examined spectroscopically. Two of these indeed proved to be newly found W-Rs, bringing the total known in the SMC from 9 to 11. Other finds included previously unknown Of-type stars (one as early as O5f?p)),the recovery of the Luminous Blue Variable S18, and the discovery of a previously unknown SMC symbiotic star. More important, however, is the fact that there does not exist a significant number of W-Rs waiting to be discovered in the SMC. The number of W-Rs in the SMC is a factor of 3 lower than in the LMC (per unit luminosity), and we argue this is the result of the SMC's low metallicity on the evolution of the most massive stars.Comment: Accepted by Astrophysical Journal. Postscript version available via ftp.lowell.edu/pub/massey/smcwr.ps.gz Revised version contains slightly revised spectral types for the Of stars but is otherwise unchange
    corecore