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Summary

� The effects of Quaternary climatic oscillations on the demography of organisms vary across

regions and continents. In taxa distributed in Europe and North America, several paradigms

regarding the distribution of refugia have been identified. By contrast, less is known about the

processes that shaped the species’ spatial genetic structure in areas such as the Himalayas,

which is considered a biodiversity hotspot. Here, we investigated the phylogeographic struc-

ture and population dynamics of Primula tibetica by combining genomic phylogeography

and species distribution models (SDMs).
� Genomic data were obtained for 293 samples of P. tibetica using restriction site-associated

DNA sequencing (RADseq). Ensemble SDMs were carried out to predict potential present and

past distribution ranges.
� Four distinct lineages were identified. Approximate Bayesian computation analyses showed

that each of them have experienced both expansions and bottlenecks since their divergence,

which occurred during or across the Quaternary glacial cycles. The two lineages at both edges

of the distribution were found to be more vulnerable and responded in different ways to past

climatic changes.
� These results illustrate how past climatic changes affected the demographic history of

Himalayan organisms. Our findings highlight the significance of combining genomic

approaches with environmental data when evaluating the effects of past climatic changes.

Introduction

Biodiversity hotspots that harbor extremely high species richness
are often associated with mountains (Myers et al., 2000). The
origin and evolution of biodiversity in mountainous areas are
highly dependent on historical orogenesis and associated climatic
changes (Hoorn et al., 2010; Favre et al., 2014; Liu et al., 2014;
Wen et al., 2014). The alteration of topography and past climatic
changes associated with mountain uplifts can cause fragmenta-
tion of species distributions, which can lead to reduced gene flow
between isolated populations. This process initiates allopatric
divergence that can ultimately drive populations towards specia-
tion (Mayr, 1963; Rice & Hostert, 1993). It has recently been
proposed that mountain uplift can also result in divergence and
speciation in the face of gene flow across a continuous altitudinal
gradient (Filatov et al., 2016). In this context, climatic oscilla-
tions during the Quaternary could have reinforced allopatric
divergence and driven intraspecific divergence as well as local

adaptation (Davis & Shaw, 2001; Hewitt, 2004; Li et al., 2013;
Liu et al., 2013; Schorr et al., 2013), as populations experienced
repeated cycles of retreat to refugia and postglacial expansions
(Abbott et al., 2000; Avise, 2000; Petit et al., 2003). The demo-
graphic changes involved in these range shifts affected the spatial
patterns of genetic variation within and among populations
(Hewitt, 2004). However, the detailed processes involved are still
poorly understood in most species.

The Himalayas, especially their core region (i.e. the Qinghai-
Tibet Plateau, QTP), comprise one of the key high-altitude bio-
diversity hotspots in the world (Myers et al., 2000). The uplift of
the QTP created a large altitudinal gradient across the region
spanning from 500 to 8848 m (Wu, 1987). The eastern
Himalayas are associated with deep valleys and characterized
mainly by a warm and wet climate (Liu et al., 2013; Fig. 1). By
contrast, the central and western Himalayas are characterized by
a cold and dry climate because of high mountains forming the
southern ridge of the Himalayas (six mountain summits exceed
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8000 m; Favre et al., 2014) and the high average altitude
(> 4000 m). The geological events created large and profound
ecological heterogeneity (Li et al., 1995; Shi et al., 1998; Yin &
Harrison, 2000), which potentially led to divergent selection and
adaptation associated with different ecological niches that created
numerous endemic species (Wu, 1987; Favre et al., 2014; Liu
et al., 2014). It is also proposed that these geological events have
provided opportunities for species to migrate out of the region
(Liu et al., 2006; Jia et al., 2012; Zhou et al., 2013; Wen et al.,
2014; Ren et al., 2015). Although the region is assumed to be
particularly vulnerable to climatic changes (Zheng, 1996; Yao
et al., 2007), the pattern and extent of glaciation during the Qua-
ternary and their effects on the evolutionary history of species
within the Himalayas have not yet been fully examined, especially
based on population genomic data.

By contrast, large-scale phylogeographic studies based mainly
on a few plastid DNA regions have been conducted on species
occurring in the QTP (e.g. Zhang et al., 2005; Meng et al., 2007;
Yang et al., 2008; Wang et al., 2009; Shimono et al., 2010; Qiu
et al., 2011; Li et al., 2013; Liu et al., 2013). The existence of a
deep divergence between the Himalayan populations and those
occurring in other regions of the plateau was already inferred,
and extensive private haplotypes have been found in the
Himalayan populations (e.g. Opgenoorth et al., 2010; Wang
et al., 2010b; Jia et al., 2011), implying that multiple plant refu-
gia probably existed in the Himalayas. However, these studies
were unable to detect the detailed effects of past climatic changes
on the demographic history of the studied organisms. Next-
generation sequencing (NGS) methods (Davey et al., 2011), such
as restriction site-associated DNA sequencing (RADseq; Peterson
et al., 2012), which have been shown to be highly effective in
tracing postglacial recolonization and reconstructing detailed
demographic histories of species (e.g. Emerson et al., 2010;
Lanier et al., 2015), could provide opportunities to better under-
stand the effects of past climatic changes in driving speciation
and evolution of alpine organisms in the Himalayas.

In this study, we focus on Primula tibetica (Primulaceae), one
of the most widely distributed alpine plant species in the
Himalayas (Hu & Kelso, 1996; Richards, 2003). P. tibetica is an

insect-pollinated (mostly by bees), heterostylous, herbaceous,
perennial plant that occurs in diverse habitats at elevations rang-
ing from 2600 to 5000 m (Hu & Kelso, 1996). Its scape is some-
times hidden among the leaves or can be as long as 13 cm. P.
tibetica is an outcrossing small herb of variable height (2–13 cm)
that disperses its seeds largely by gravity and usually grows in wet
meadows or along hill streams (Hu & Kelso, 1996; Richards,
2003). Previous biogeographic analyses have indicated that
P. tibetica originated in the Himalayas after the recent QTP uplift
(i.e. 3.4–1.6 million yr ago (Ma); Ren et al., 2015) and subse-
quent climatic oscillations during the Quaternary are likely to
have played important roles in its intraspecific divergence and
demographic history. This herbaceous species hence represents
an ideal candidate to evaluate the effects of past climatic changes
on a species’ evolutionary history in the Himalayas. We use an
integrative approach combining genomic phylogeography with
niche modeling (e.g. Schorr et al., 2012) to elucidate the diver-
gence and demographic history of P. tibetica. The aims of our
study are to identify the phylogeographic pattern of this species
in the Himalayas and the factors that triggered its intraspecific
divergence; to reconstruct a detailed demographic history of
P. tibetica; and to combine species distribution models with
approximate Bayesian computation (ABC) modeling to evaluate
the effects of Quaternary climatic changes on its demographic
history. This study represents the first RADseq analysis of a plant
species occurring in the QTP and contributes to a better under-
standing of the role played by Quaternary climatic changes on
the present-day distributions of organisms in mountain ranges.

Materials and Methods

Sampling, RAD library preparation and sequencing

We sampled a total of 61 populations (10–40 individuals for
each population) of Primula tibetica Watt in Tibet using the dis-
tribution described in Flora of China (Hu & Kelso, 1996) as a
reference to include all the relevant regions for the species. All
materials were dried and stored in silica gel in the field. We
selected 16 populations for the genetic study (Fig. 1; Supporting

Fig. 1 Sampling locations of all 61
populations of Primula tibetica (red stars)
and the 16 selected populations (large
colored circles) used for genomic analyses in
this study.
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Information Table S1) that were representative of both the geo-
graphical distribution and the diversity of ecological niches of
P. tibetica. We estimated the latter by extracting the 19 biocli-
matic variables of WorldClim (http://www.worldclim.org/cur-
rent) from the occurrences of the individuals sampled in the 61
populations. We did a principal component analysis (PCA) using
the PRCOMP function in the STATS package of R (R Core Team,
2012) and identified the 16 populations based on the PC1 and
PC2 axes (which explained nearly 80% of the variance; Fig. S1).
Fifteen to 20 individuals were chosen from each population,
which gave us a total of 293 individuals that were processed with
RADseq. The leaf tissues were ground to dust using an electric
tissue homogenizer. Total genomic DNA was then isolated using
the DNeasy Plant Mini Kit (Qiagen) following the manufac-
turer’s instructions. The extracted DNA was further cleaned with
phenol-chloroform to remove salts or inhibitors that may reduce
the activity of restriction enzymes.

The cleaned genomic DNA was individually barcoded and
processed into three libraries using a double-digestion restriction
fragment-based procedure following a modified protocol listed in
the Supporting Information of Mastretta-Yanes et al. (2015).
Briefly, the DNA was double-digested with EcoRI and MseI
restriction enzymes, followed by the ligation of Illumina adapter
sequences and unique 8 bp barcodes that differed by at least three
bases. Ligation products were purified with AMPure XP beads
(Beckman Coulter, Brea, CA, USA) and amplified by Phusion
High-Fidelity DNA Polymerase (New England Biolabs, Ipswich,
MA, USA) with 12 cycles. The amplified products were pooled
among samples and size-selected between 300 and 500 bp using
AMPure XP beads with bead sample ratios of 0.8 and 0.2 modi-
fied from a protocol in https://www.neb.com/protocols/1/01/
01/size-selection-e6270. The libraries were sequenced using sin-
gle-end reads 100 bp in length in three lanes of Illumina
HiSeq2500 according to the manufacturer’s instructions.

Processing of Illumina data

Single-end Illumina reads were processed into RAD-tags using
the STACKS-1.30 software pipeline (Catchen et al., 2011, 2013)
based on its ease of use, features and performance (Davey et al.,
2013). Initially, samples were demultiplexed with PROCESS_
RADTAGS. Reads with an average Phred score of at least 30 and an
unambiguous barcode and restriction cut site were retained. All
reads were trimmed to 60 bp in length. The raw data were
deposited in GenBank (accession no. PRJNA339808). Next, the
USTACKS program was used for the de novo assembly of raw reads
into RAD-tags. We used all 293 samples to build a catalog in
CSTACKS and matched each sample against the catalog to identify
alleles in SSTACKS. The execution of these components was accom-
plished using the DENOVO_MAP.PL script with the following set-
tings: minimum number of reads to create a stack, m = 3;
maximum distance allowed between stacks, M = 2; maximum
number of mismatches allowed between loci. n = 2; -t flag to
remove or break up highly repetitive RAD-tags during the
USTACKS component and upper bound of error rate, e = 0.1. A
conservative bound was preferred over the unbounded model

because the latter has been shown to underestimate heterozygotes
(Catchen et al., 2013). We used RXSTACKS to further filter the data
to increase quality, correct single nucleotide polymorphism
(SNP) calls and remove haplotypes that were in excess. The
RXSTACKS used the output from the DENOVO_MAP.PL script as
input combined with the following filters: –conf_filter –conf_lim
0.25 –prune_haplo –model_type bounded –bound_high 0.1 –
lnl_lim -10.0 –lnl_dist. After RXSTACKS, CSTACKS and SSTACKS were
run again with the same setting as before to rebuild the catalogue
of reads. To test the sensitivity of our results to different sets of
parameters, we further processed our RAD data with two other
parameter settings: using the same settings as earlier except for
M = 3 and n = 3, and trim the reads to 90 bp in length (M = 3,
n = 3 and 90 bp); and M = 5, n = 3 and 90 bp. The results of the
population structure analyses based on the three datasets were
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Fig. 2 Distribution of individuals of Primula tibetica along principal
component (PC) scores (PC1, 20% vs PC2, 9.4%; PC1 vs PC3, 6.6%) of
genetic variation based on the analysis of single nucleotide polymorphism
(SNP) dataset; individuals are color-coded according to their population
identities (see Fig. 1).
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qualitatively similar (Figs 2, S2), and we only presented results
from our analyses based on the dataset generated by M = 2, n = 2,
given the increased number of assembled loci (3509 vs 2822 vs
2031).

We filtered the catalog of reads using the POPULATIONS module
to produce datasets for downstream population genetic analyses.
We first retained RAD-tags with a minimum stacks depth, m = 3.
Polymorphic RAD loci that were present in at least 50% of the
individuals of each population and in all 16 populations were
retained. Potential homeologs were excluded by removing loci
showing heterozygosity > 0.5 within samples (Hohenlohe et al.,
2011). We further filtered our dataset with a minor allele fre-
quency (MAF) > 0.01 and kept only biallelic SNPs to comply
with the assumptions of the current methods for analyzing SNP
data. Population genetic statistics, including nucleotide diversity
(p), Wright’s F-statistic (FIS) and observed heterozygosity (Hobs)
were calculated using the POPULATIONS program in the STACKS
pipeline (Holsinger & Weir, 2009; Catchen et al., 2013). Pair-
wise FST values were calculated among populations in GENODIVE

v.2.0b27 (Meirmans & Van Tienderen, 2004), and significance
was determined using 19 104 permutations.

Characterization of population genetic structure

We first identified population genetic structure using the
Bayesian method implemented in STRUCTURE 2.3.4 (Pritchard
et al., 2000). SNPs located at the same locus are physically linked
and cannot be handled by STRUCTURE. We thus filtered out
linked SNPs using the –write_single_snp option in the
POPULATIONS script. Analyses were performed under the ‘Admix-
ture model’ and the ‘Correlated allele frequency model’ with
K-values ranging from 1 to 18. Ten independent runs were per-
formed for each value of K using 19 105 generations for the
burnin and 29 105 generations for the sampling. The optimal K
was chosen using the delta-K method of Evanno et al. (2005) as
implemented in STRUCTURE HARVESTER (Earl & vonHoldt,
2012). The coefficient for cluster membership of each individual
was averaged across the 10 independent runs using CLUMPP

(Jakobsson & Rosenberg, 2007) and plotted using DISTRUCT

(Rosenberg, 2004). We further performed a PCA to visualize the
major axes of variation of the population genetics using the
adegenet package (glPCA function; Jombart, 2008) in R. Finally,
we estimated a maximum-likelihood phylogeny of the 16
populations from unlinked SNPs with a GTR +G model using
PHYML 3.0 (Guindon et al., 2010). Primula nutans and
Primula fasciculata were used as outgroups. Nodal support was
estimated using 1000 bootstrap replicates.

Relationships between genetic differentiation and
geography

The first two components of the PCA performed on the genetic
data and the geographic coordinates (latitude and longitude) of
the 16 populations were used in a Procrustes analysis using the R
package VEGAN (Oksanen et al., 2013). This analysis minimizes
the sum of squared Euclidean distances between two sets of

points by rotating one set of points to match the other, while pre-
serving the relative distances among all points within the map
(Wang et al., 2012). The similarity of the two maps is quantified
using the Procrustes similarity statistic t0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� D
p

, where D is
the minimum sum of the squared Euclidean distances between
the two maps, scaled to range between 0 and 1 (Wang et al.,
2010a, 2012). We used the PROTEST function in VEGAN to test,
using 19 105 permutations, the probability of observing a simi-
larity statistic higher than the observed t0 if no geographic pattern
is assumed (Wang et al., 2012). We also tested for the presence of
isolation by distance (IBD) by comparing pairwise FST values
and Euclidean geographic distances among populations within
and among groups that were identified by the PCA and
STRUCTURE analyses. We further tested the significance of the
relationship between geographic and genetic distance within
groups with a Mantel test in the package VEGAN using 19 105

permutations.

Estimates of historical demography

To decipher the historical demography of P. tibetica, we esti-
mated divergence times, admixture and changes in population
size among different population groups using ABC. We pooled
the population samples into four ‘groups’ (eastern group E, R01–
R02; central-eastern group CE, R03; central group C, R04–R12;
western group W, R13–R16) for the ABC simulations based on
the first two axes of the PCA that captured the main characteris-
tics in population histories (Fig. 2). We tested three competing
scenarios using DIY-ABC v.2.1.0 (Cornuet et al., 2010, 2014)
based on the results from STRUCTURE and the phylogenetic tree
(Fig. S3). In all scenarios, groups E and C diverged first and
group W originated from group C. The scenarios modeled the
possible hypotheses about the origin of the group CE, which can
arise from either groups E or C, or be the result of an admixture
between the two groups (Fig. S4a). We selected for these analyses
a single SNP per locus, and the SNPs further had to be present in
at least 70% of the individuals from each group and in all four
groups. The simulated SNP dataset was generated following the
algorithm proposed by Hudson (2002). We further chose
MAF = 0.01 to increase the mean amount of genetic variation of
both the observed and simulated datasets and to reduce the pro-
portion of loci that may correspond to sequencing errors. We
gave each scenario a uniform prior probability (Table S2) and
selected all summary statistics to generate a reference table con-
taining 39 106 simulated datasets (on average 106 per scenario).
We used 1% of the simulated datasets closest to the observed data
to estimate the relative posterior probabilities for each scenario
via logistic and posterior distribution of historical demographic
parameters according to the most likely scenario (Cornuet et al.,
2010). The time parameters are estimated in generations and
converted into years by multiplying generation time, which was
set to 1 yr for P. tibetica. Although there is no information of gen-
eration time for P. tibetica, filed observations are coherent with
this assumption and other studies on related species of Primula
have also used a generation time of 1 yr to study demographic
history of P. obconica (Yan et al., 2012). In addition, we also
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considered the substructure (R11–R12) identified by the PCA
and STRUCTURE as a fifth group for ABC modeling (Fig. S5).
However, simulations based on five groups were not stable
enough to provide a convincing outcome compared with the
ABC modeling with four groups, which could further indicate
that these two populations do not form a homogeneous cluster
(see Notes S1 for a full description of the ABC modeling with
five groups).

Finally, DIY-ABC was used to investigate changes in population
sizes of the four groups in the recent past. We first selected only
one SNP per locus and used two thresholds (i.e. SNP had to be
present in at least 70% vs 80% of the individuals in each group)
to generate datasets for each group. We then did PCA based on
these datasets, and the two thresholds resulted in similar structure
patterns for each group (Fig. S6). We used the datasets generated
based on the 80% threshold for these ABC analyses, because they
have fewer missing data and it saved computational time. We
tested the following scenarios of demographic changes: continu-
ous expansion since divergence; recent expansion; expansion fol-
lowed by shrinkage; and expansion followed by shrinkage and a
new expansion event (Fig. S7a; Wang et al., 2016). We used the
same strategy as earlier to choose the most likely scenario and
estimate the parameters of interest.

Species distribution models

An ensemble of species distribution models (SDMs; Guisan &
Zimmermann, 2000) was generated for P. tibetica using three dif-
ferent techniques: generalized linear model, gradient boosting
machine and random forests, as implemented in the R package
biomod2 (Thuiller et al., 2009; see Methods S1 for similar results
with MAXENT as a fourth technique, and explanations therein;
Fig. S8). A total of 58 species occurrences obtained directly from
the filed collections were used as presence data to calibrate the
models. We used the 19 bioclimatic variables of Worldclim
(http://www.worldclim.org; Hijmans et al., 2005) as environ-
mental predictors. To avoid multicollinearity, we ran a Pearson
correlation analysis to eliminate one of the variables in each pair
with a correlation value higher than 0.8 (Dormann et al., 2013).
A set of seven variables was finally used to carry out the SDM
(Methods S1). For a proper evaluation, models were calibrated
on 70% of the data and evaluated on the remaining 30% using
area under the curve (AUC) and true skill statistic (TSS) statistics
(Allouche et al., 2006). This sampling procedure was replicated
10 times. The potential distribution was considered as a consen-
sus across statistical techniques (Mateo et al., 2012) and their
contribution to the ensemble was proportional to their AUC val-
ues. The consensus model was converted to a binary model (pres-
ence/absence) applying three different threshold criteria
(Methods S1): thresholds that allow a maximum of 5% or 10%
of omission error (i.e. omission error is the percentage of the real
presence predicted as absences in the model; Fielding & Bell,
1997), and the threshold maximizing the AUC statistic. The con-
sensus model was then projected onto different past climatic peri-
ods using the data available in the Worldclim dataset: the last
interglacial (LIG; 0.12–0.14Ma), the Last Glacial Maximum

(LGM; 0.022Ma), and the mid-Holocene (MH; 0.006Ma). For
the MH and LGM we employed three different general circula-
tion models (GCMs; Earth-system climatic models coupling the
ocean, the atmosphere and the land surface; CCSM4, MIROC-
ESM, MPI-ESM-P available from http://cmip-pcmdi.llnl.gov/
cmip5/processed on www.worldclim.org). Only one GCM is
available for the LIG period.

Results

Sequence data quality and processing

We sequenced 293 individuals of P. tibetica using three lanes of
Illumina that produced a total of > 730 million reads. Over 560
million reads passed our quality controls and over 460 million
reads were used in the assembly of the RAD-tags (Table S3). We
obtained 3509 RAD loci containing 8930 SNPs that could be
used for population genetics analyses. The dataset was used to
estimate historical scenarios of P. tibetica containing 4882 single-
SNP loci. Finally, four datasets containing 8579, 5401, 7777,
and 10 431 single-SNP loci were used to estimate the changes in
population sizes of groups E, C, CE and W, respectively.

Population structure

The first two axes of PCA identified four genetic groups and
explained 20% and 9.4% of the total variation, respectively
(Fig. 2). The first axis, PC1, showed considerable correspondence
between the genetic data and the east–west geographic axis. The
two eastern populations (R01, R02) and four western popula-
tions (R13–R16) formed two separate groups (groups E and W)
that were located on the two extreme sides of the distribution.
One central-eastern population (R03) and the rest of populations
(R04–R12) were further isolated from the groups E and W by
the second axis of the PCA (PC2; Fig. 2) and formed two other
groups (groups CE and C), respectively. The third axis of the
PCA (PC3; 6.6% of the total variation) showed a substructure
within group C, with four populations separating gradually from
the rest of five populations following the increase of geographic
distance (Figs 1, 2). This pattern of population structure was also
supported by the STRUCTURE analysis, which best explained the
data with K = 4 (Fig. 3). Looking at intermediate K-values, the
analyses showed that, at K = 2 (the second most probable number
of genetic clusters; Fig. S9), group E first diverged from the rest
of the populations (Fig. 3), which was also evident in the phylo-
genetic tree (Fig. S3). Group CE was always represented by
admixed populations between the groups E and C at any values
of K between 2 and 4 (Fig. 3). By contrast, the substructure
(R09–R12) within group C identified by the PC3 was not always
represented by admixed populations in STRUCTURE from K = 2 to
K = 4. Moreover, the populations comprising this substructure
were not clustered together along the PC3. We therefore did not
include this substructure when performing ABC modeling (see
more details in Notes S1 for the reason not including the sub-
structure in ABC analyses). Finally, the Procrustes analysis identi-
fied a significant similarity score between the populations in
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genetic PC space and their actual geographic locations
(t0 = 0.815, P < 10�5). A graphical examination of the rotated
genetic coordinates (Fig. 4) showed that individuals of P. tibetica
were more genetically similar within each group than would be
expected given the geographic distance among populations.

Genetic diversity and IBD

The average within-population genetic diversity p ranged from
0.0011 to 0.0044, when considering all genetic positions, includ-
ing those not polymorphic anywhere in the dataset (Table 1).
Group E exhibited the lowest genetic diversity, which was three
times lower than the diversity measured in groups CE and C, or
two times lower than that of group W. The same pattern was also
suggested by other standard measures of genetic diversity (e.g.
observed heterozygosities; Table 1).

Differentiation among populations was significant, with FST
values ranging from 0.032 to 0.807 (Table S4). Genetic distances
between populations of different groups increased with geograph-
ical distances > 200 km, but populations among groups located

at smaller geographical distances displayed high genetic diver-
gence (Fig. 5a). The genetic distance between populations of the
same group was, however, always smaller than the distances
among groups, which is congruent with the strong genetic struc-
ture observed in P. tibetica (see earlier). Furthermore, genetic dis-
tances increased with larger geographic distances among
populations within groups (Fig. 5a), which was consistent with
the significant pattern of IBD when performing a Mantel test
among populations of group C (r = 0.51, P = 0.016; Fig. 5b).
Although genetic distances among populations of group W were
small (Table S4), we found a strong effect of IBD on population
differentiation of this group (r = 0.99, P = 0.042; Fig. 5b).

Estimates of historical demography

Approximate Bayesian computation modeling of the demo-
graphic history of P. tibetica indicated that the scenario depicting
an origin of group CE as a result of admixture between groups C
and E provided the best fit to our RADseq data (Fig. S4b), with
posterior probabilities significantly higher than the other
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the genetic variation, respectively) relative to
the geographic longitude and latitudinal
axes. The length of the line connecting
individuals in PC space to their geographic
location represents the extent of the
deviation from the expected pattern of
genetic variation based on geography.
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scenarios (0.816, 95% credible interval: 0.797–0.834; Table S5).
Modeling the changes in population size for each group recov-
ered complicated demographic histories for the four groups of
populations. Analyses for groups E and CE supported a scenario
of ‘expansion–shrinkage–expansion’, while the two other groups
were better modeled by a scenario of ‘expansion–shrinkage’
(Fig. S7; Table S5).

We estimated the divergence time and the population sizes as
well as the timing and extent of these changes for the four groups.
Group C was found to be the ancestral population of P. tibetica
and started to expand its distribution c. 1.11Ma (95% highest
posterior density (HPD): 0.53–1.65Ma; Table S6), followed by
a slight bottleneck c. 0.063Ma (HPD: 0.007–0.136Ma). Group
E diverged from the ancestral populations c. 0.76Ma (HPD:
0.49–0.96Ma; Table S7). It started to expand until c. 0.45Ma
(HPD: 0.15–0.92Ma), before experiencing a severe bottleneck
that decreased by c. 25 times its population size c. 0.12Ma
(HPD: 0.063–0.2Ma). Then it quickly expanded just before
LGM c. 0.037Ma (HPD: 0.011–0.078Ma) and reached the pre-
vious population size. During the first expansion of group E, it
came into secondary contact with group C, exchanged genes and
resulted in the formation of group CE c. 0.37Ma (HPD: 0.213–
0.525Ma). Group CE experienced ancient expansion and shrink-
age, and a recent expansion during the LGM (Fig. 6). Group W
diverged from the ancestral population more recently, c.
0.095Ma (HPD: 0.037–0.203Ma), followed by expansion and
a slight bottleneck during the LGM.

Species distribution models

The consensus models were highly accurate with regard to AUC
(0.996) and TSS (0.998) values. Current potential distribution
based on the three threshold approaches predicted similar results,

Table 1 Population summary statistics calculated for the 3509 restriction site-associated DNA sequencing (RADSeq) loci

Genetic cluster Population n Private (%) Polymorphic (%) p Hobs FIS

Group E R01 15 0.22 0.40 0.0013 0.0012 0.0003
R02 18 0.19 0.34 0.0011 0.0011 0.0002

Group CE R03 15 2.58 1.13 0.0037 0.0029 0.0021
Group C R04 12 1.15 1.33 0.0038 0.0028 0.0029

R05 15 1.31 1.50 0.0042 0.0033 0.0027
R06 16 0.64 1.60 0.0041 0.0033 0.0025
R07 17 10.64 1.82 0.0043 0.0035 0.0028
R08 15 0.11 1.80 0.0044 0.0035 0.0029
R09 15 0.36 1.40 0.0038 0.0031 0.0022
R10 13 0.31 1.29 0.0038 0.0031 0.0019
R11 16 0.48 0.67 0.0021 0.0018 0.0007
R12 16 2.41 1.08 0.0031 0.0025 0.0019

GroupW R13 18 0.10 1.02 0.0029 0.0026 0.0009
R14 18 0.01 1.09 0.0029 0.0026 0.0011
R15 15 0.00 1.08 0.0030 0.0025 0.0014
R16 13 0.10 0.84 0.0025 0.0024 0.0006

Included are the average number of individuals genotyped at each locus (n), the proportion of polymorphic single nucleotide polymorphisms (SNPs) unique
to each population (% private), the percentage of SNPs (% polymorphic) in each population, the average nucleotide diversity (p), the average observed
heterozygosity per locus (Hobs) and the Wright’s inbreeding coefficient (FIS). The total number of DNA sites (polymorphic + invariable) in the RADSeq loci is
210 540. E, eastern group; CE, central-eastern group; C, central group; W, western group.
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Fig. 5 (a) Averaged pairwise genetic differentiation between
populations (FST) within and among genetic clusters for Primula

tibetica based on six categories of geographic distances. (b)
Correlations between pairwise genetic differentiation among
populations (FST) within the central group (C; red; r = 0.51, P = 0.016)
or the western (W) group (blue; r = 0.99, P = 0.042) and the
geographic distance between populations.
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but the 5% omission error generally yielded a better representa-
tion of the actual distributions of the species, and we therefore
presented all results based on the 5% omission threshold. The
paleoclimatic conditions of LIG predicted large differences in
annual mean precipitation in the Himalayas compared with the
ones observed at the present, the MH or the LGM (Table S8).
Therefore, it was not possible to predict the optimum climatic
niche for the species during the LIG in this area considering the
only available GCM model (Fig. S10; Methods S1). The predic-
tions to MH conditions based on three GCMs (CCSM4,
MIROC and MPI) yielded a continuous and less occupied over-
all distribution compared with current conditions, but larger dis-
tributions than the prediction at the LGM (Figs 7, S10). During
the LGM, the three GCMs yielded similar patterns but frag-
mented palaeodistributions of P. tibetica (Figs 7, S10). All three
GCMs suggested a main refugium in the central Himalayas and
another in the southwestern Himalayas. The incongruence
between models at the LGM yielded eastern or western expan-
sions of suitable habitat compared with the predictions for the
present and MH.

Discussion

Primula tibetica displays a strong geographic structure and we
identified four main groups of populations that may represent
multiple past refugia for this species in the Himalayas. IBD had
an effect on genetic distance among populations within groups
but not among groups. Instead, past climatic events were inferred
to be the major factors in shaping the large-scale spatial genetic
structure into four groups. The divergent times of the four
groups based on ABC modeling are dated to < 1Ma and the
divergences are congruent with past glacial and interglacial
events, providing support for intraspecific divergence driven by
the Quaternary climatic oscillations. The use of genomic data
coupled with extended evolutionary modeling allowed us to

recover for the first time a detailed demographic history of a plant
species native and endemic to the Himalayas. The changes in
population sizes that we inferred, combined with species distribu-
tion modeling, suggest that the two easternmost and westernmost
gene pools were more affected by past climatic changes than the
ancestral populations. The response to climatic changes of popu-
lations of a species depends on its specific ecological preferences,
and the range dynamics identified for this cold-tolerant species
during the last glaciation differ from species associated with
warmer environments.

Multiple refugia and IBD

The use of genomic data allowed us to identify four distinct
groups of populations for P. tibetica, which occupy the eastern,
central-eastern, central and western areas of the species distribu-
tion (Figs 1, 2). These results, as well as the projected habitat at
the LGM (Fig. 7c), suggest that multiple potential allopatric refu-
gia existed for this species, probably located in the eastern, central
and southwestern Himalayas. Although previous studies have

Fig. 6 Summary of inferred demographic history of the four genetic
clusters of Primula tibetica. Changes in population sizes are integrated into
the divergent scenario. Times on the vertical axis represent the glaciation
periods that occurred in the Qinghai-Tibet Plateau (QTP) (Zheng et al.,
2002). Population sizes are indicated on each cylinder. Times of
divergence and changes in population sizes are indicated by horizontal
dashed lines. Only the mean values are shown (see Supporting
Information Tables S6, S7 for 95% highest posterior density for all values).
E, eastern group; CE, central-eastern group; C, central group; W, western
group

(a)

(b)

(c)

Fig. 7 Habitat suitability of Primula tibetica predicted by species
distribution models (SDMs) for present (a), mid-Holocene (MH) (b) and
last Maximum Glacial (LGM) (c) using three techniques. SDMs for the MH
and LGM are based on three climatic models. GCMs, general circulation
models.
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found extensive private haplotypes in populations of diverse
species and suggested multiple plant refugia in the Himalayas
(Opgenoorth et al., 2010; Wang et al., 2010b; Jia et al., 2011),
the clear pattern identified by our genomic-level data was not yet
described in the region. For example, Opgenoorth et al. (2010)
found that private haplotypes were evenly spread across the distri-
bution range of a juniper complex, indicating that these junipers
maintained multiple glacial (cryptic) refugia throughout their
current range and underwent only localized postglacial expan-
sions. The use of plastid and nuclear markers, which provide less
resolution compared with genomic-level data, may prevent the
detection of a clear pattern.

Procrustes analysis shows a high similarity score between the
overall rotated genetic space and their geographic locations
(t0 = 0.815, P < 10�5; Fig. 4), which is probably a result of the
large-scale spatial genetic structure shaped by the refugium-
driven vicariance. Long-distance dispersal and gene flow that may
disturb this pattern of population structure is unlikely in
P. tibetica, because this small herb (2–13 cm) is pollinated mainly
by insects (e.g. bees) and disperses its seeds largely by gravity
(Richards, 2003). Its poor ability to disperse, associated with the
extreme altitudinal gradient present in the Himalayas, has proba-
bly caused fragmentation, reduced gene flow and further rein-
forced the genetic structure (Liu et al., 2014; Wen et al., 2014).
IBD plays a minor role in the large-scale pattern of population
structure in P. tibetica (Fig. 5a). However, at narrow scales, there
are IBD effects on the genetic distance of populations within
groups (Fig. 5). The decrease of genomic similarities between
populations within groups is probably a result of limited dispersal
among populations (e.g. Ferchaud et al., 2010; Lanier et al.,
2015). However, separating the specific effects of geography and
the environment on population structure is difficult (Thorpe
et al., 2008; Wang et al., 2013). Our results show some differenti-
ation of the ecological niches of the population (Fig. S1), but
finer-scale analyses are needed to identify and quantify the impor-
tance of these variables (e.g. Lexer et al., 2014).

Quaternary climatic oscillations trigger intraspecific
divergence in Primula tibetica

The genomic data presented here provide clear evidence that
intraspecific divergence in P. tibetica was mainly driven by Qua-
ternary climatic oscillations. The effects of Quaternary climatic
oscillations on the distribution patterns and phylogeographic
structure of species in the mid- to high-latitude regions of Europe
and North America (Comes & Kadereit, 1998; Abbott et al.,
2000; Avise, 2000; Hewitt, 2004; Anderson et al., 2006; Emer-
son et al., 2010), and in high-altitude areas (Qiu et al., 2011; Liu
et al., 2014; Wen et al., 2014; Sun et al., 2015) have already been
described. However, no studies yet exist for the Himalayas, and
our analysis therefore provided a unique opportunity to uncover
the detailed Quaternary demographic history of high-altitude
populations and to better understand the processes playing a role
in their distribution in this region.

The time frame of the first divergence between the eastern and
central populations (groups E and C; Fig. 6) is congruent with

the largest Naynayxungla glaciation in the QTP. This event
reached its maximum between 0.8 and 0.5Ma with an ice sheet
covering an area five to seven times larger than its current range
(Shi, 2002; Zheng et al., 2002). Such an extensive ice sheet could
have caused fragmentation of ancestral populations and triggered
the earliest divergence into two groups. The formation of the
admixed central-eastern population (group CE) was dated to c.
0.37Ma (HPD: 0.213–0.525Ma) and coincides with the old
expansion of group E (Fig. 6). During this period, the glaciation
became progressively less extensive, but a cold climate is thought
to have prevailed in the QTP until 0.17Ma (Shi, 2002). The old
expansion of group E may have been favored by such a cold cli-
mate, eventually resulting in a secondary contact with group C
and the formation of group CE. Group W diverged from group
C most likely during the LIG period when the climate was
warmer (Thompson et al., 1997; Shi et al., 1998; Zheng et al.,
2002) and may have allowed the ancestral populations to colo-
nize the western high-altitude region.

Demographic history of Primula tibetica

Our analyses of the demographic history of each group of popu-
lations show that all have experienced ancient expansions fol-
lowed by bottlenecks (Fig. 6). The western, central and central-
eastern groups of populations that occur at high altitudes have
experienced only slight bottlenecks during the last glaciation
(Fig. 6), a period that started from 0.07Ma and continued until
the end of the LGM in the QTP (0.01 Ma; Thompson et al.,
1997; Zheng et al., 2002). Our ABC modeling of changes in
population sizes shows that populations comprising group C
experienced the most ancient expansion c. 1.11Ma (HPD: 0.53–
1.65Ma), which indicates that the origin of this species probably
occurred in the central Himalayas (Fig. 6). The time estimated
for the most ancient expansion of this species is congruent with
the divergent time from its two closely related species obtained
from previous phylogenetic study (1.19Ma, HPD: 0.51–
2.13Ma; Ren et al., 2015). The current populations of group C
occur at an average altitude of 4260 m (Table S1) and are thus
probably adapted to live in cold environments. Their tolerance to
cold might thus have facilitated the persistence of populations at
high-altitude glacial refugia during past glaciations (Fig. 7c).

By contrast, the eastern populations (group E), which occur at
the lowest altitude (average 2887 m; Table S1), experienced a sev-
ere bottleneck during the LIG period, but expanded during the
LGM. The unusual demographic history of the eastern popula-
tions (group E) can be explained by the warmer climate in this
region of the Himalayas, which displays a difference of > 8°C in
comparison with the region of the central populations (assuming
that current temperature in the Himalayas decreases by 0.64°C
per 100 m; Li & Zhang, 2010). The warmer interglacial period
could have been detrimental for a cold-adapted species, whereas
the population expansion during the LGM corresponds to a
period of colder climate more similar to the situation that pre-
vailed for its ancestral populations, but warm enough in the east-
ern regions to avoid extensive coverage by ice sheets (Shi et al.,
1998; Zheng et al., 2002; Owen, 2009). Further evidence
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supporting the reduction of population size during warmer peri-
ods comes from the current and MH SDMs which show
restricted predicted distributions in the eastern Himalayas
(Fig. 7). Nevertheless, the possible recent reduction of population
size in the eastern Himalayas detected by SDM is not supported
by our genomic data (Figs 6, 7). This period represents a small
timescale (i.e. 18 000–25 000 yr), however, and a small density of
population sampling (i.e. two populations) of group E may not
provide enough information for such a recent reduction.

Finally, the western populations (group W) occur at the high-
est average altitude (4552 m; Table S1) and expanded during the
LIG period before retreating to a southwestern refugium during
the LGM (Figs 6, 7). The warm climate during the LIG period
may have, in contrast to the eastern populations, facilitated
expansion of this group through the opening of new potential
habitats. The expansion to high-altitude areas in the western
Himalayas during warmer periods is also supported by the com-
parison of the SDMs between the present and the MH, where
more areas were predicted at present than in the MH (tempera-
ture is higher at present than the MH; Table S9). During the
LGM, this area may have become too cold for this species to per-
sist at such high altitudes as shown in the SDMs (Fig. 7). The
two marginal populations that have colonized opposite geograph-
ical directions corresponding to very different altitudinal ranges
are more vulnerable and respond differently to past climatic
changes. Knowing the possible effect of past climatic changes on
current populations may thus provide new insights into their
future range dynamics in facing ongoing climatic changes and be
useful for future management strategies (e.g. Lanier et al., 2015).

Conclusion

We combined genomic information and SDMs to identify the
processes driving the phylogeographic structure of a high-altitude
plant species over a large area of the Himalayas. Our analyses
demonstrate the effects of past climatic changes on the intraspecific
divergence of P. tibetica and highlight new patterns that are impor-
tant to understand the current distributions of plant species in the
Himalayas. The combination of population genomics and SDMs
also provides new insights to predict the impact of future climatic
changes on population dynamics. Taken together, we suggest that
the central Himalayas was an ancient glacial refugium throughout
the Quaternary glaciations in the area. The remaining lineages
have persisted in additional refugia with different responses to cli-
matic cooling during the LGM. Our study, taken together with
those recently reported for other cold-adapted species that occur in
the QTP (e.g. Shimono et al., 2010; Li et al., 2013; Liu et al.,
2013), makes it clear that such species have exhibited different
range dynamics (i.e. population persistence in high-altitude areas
or even expansion) during the last glaciation relative to species
associated with warmer environments.
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