60 research outputs found

    Interaction of Hydrogen with Graphitic Surfaces, Clean and Doped with Metal Clusters

    Get PDF
    Producción CientíficaHydrogen is viewed as a possible alternative to the fossil fuels in transportation. The technology of fuel-cell engines is fully developed, and the outstanding remaining problem is the storage of hydrogen in the vehicle. Porous materials, in which hydrogen is adsorbed on the pore walls, and in particular nanoporous carbons, have been investigated as potential onboard containers. Furthermore, metallic nanoparticles embedded in porous carbons catalyze the dissociation of hydrogen in the anode of the fuel cells. For these reasons the interaction of hydrogen with the surfaces of carbon materials is a topic of high technological interest. Computational modeling and the density functional formalism (DFT) are helping in the task of discovering the basic mechanisms of the interaction of hydrogen with clean and doped carbon surfaces. Planar and curved graphene provide good models for the walls of porous carbons. We first review work on the interaction of molecular and atomic hydrogen with graphene and graphene nanoribbons, and next we address the effects due to the presence of metal clusters on the surface because of the evidence of their role in enhancing hydrogen storage.Ministerio de Economía, Industria y Competitividad (Grant MAT2014-54378-R

    Activated Carbons Derived from High-Temperature Pyrolysis of Lignocellulosic Biomass

    No full text
    Biomass pyrolysis to produce biofuel and hydrogen yields large amounts of charred byproducts with low commercial value. A study was conducted to evaluate their potential for being converted into higher value activated carbons by a low-cost process. Six chars derived from various lignocellulosic precursors were activated in CO2 at 800 °C to 30–35% weight loss, and their surface area and porosity were characterized by nitrogen adsorption at 77 K. It was found that, in similar activation conditions, the surface area of the activated carbons correlates with the activation energy of the oxidation reaction by CO2, which in turn varies inversely with the carbon yield after thermolysis in nitrogen at 1000 °C. Since lignin is the most thermally-stable component of lignocellulosic biomass, these results demonstrate, indirectly, that robust, lignin-rich vegetal precursors are to be preferred to produce higher quality activated carbons. The chars derived from white pine (pinus strobus) and chestnut oak (quercus prinus) were converted to activated carbons with the highest surface area (900–1100 m2/g) and largest mesopores volume (0.85–1.06 cm3/g). These activated carbons have properties similar to those of commercially-available activated carbons used successfully for removal of pollutants from aqueous solutions

    Microstructure-Dependent Gas Adsorption: Accurate Predictions of Methane Uptake in Nanoporous Carbons

    No full text
    We present a framework for rapidly predicting gas adsorption properties based on van der Waals density functional calculations and thermodynamic modeling. Utilizing this model and experimentally determined pore size distributions, we are able to accurately predict uptakes in five activated carbon materials without empirical potentials or lengthy simulations. Our results demonstrate that materials with smaller pores and higher heats of adsorption can still have poor adsorption characteristics due to relatively low densities of highly adsorbent pores

    Nitrogen adsorption data, FIB-SEM tomography and TEM micrographs of neutron-irradiated superfine grain graphite

    No full text
    This manuscript provides raw nitrogen gas adsorption data, images and videos obtained from a technique that combines Focused Ion Beam (FIB) and Scanning Electron Microscopy (SEM) known as FIB-SEM tomography and Transmission Electron Microscopy (TEM) micrographs. This collection of data is useful for characterization of the effects of high fluence neutron irradiation in nuclear graphite as described in the associated manuscript, “Mesopores development in superfine grain graphite neutron-irradiated at high fluence” (Contescu et al., 2019). Nitrogen adsorption isotherms at 77 K are provided for graphite samples before and after neutron irradiation at 300, 450, and 750 °C at fluences before and after turnaround. FIB-SEM tomography reveals porosity of unirradiated and irradiated samples. Using this technique, four data sets were obtained, of which the first three are presented in video format, whereas the fourth one is a series of images provided in raw format unique to this manuscript. All microscopy data document the microstructure, surface area and porosity of superfine grain graphite G347A (Tokai Carbon, Japan) before irradiation and irradiated after turnaround at 400 °C. TEM micrographs provide unique information on irradiation damage at high neutron fluence (>27. 8 displacements per atom, dpa) in the microstructure and crystal lattice of graphite. Additional TEM micrographs are provided here, which do not duplicate the research paper published elsewhere (Contescu et al., 2019). These data sets are unique, as samples at high irradiation doses have never been measured or imaged before with the aforementioned techniques
    corecore