8 research outputs found
The role of PTOX in the acclimation of alpine plants to extreme conditions
Le climat alpin à plus de 2400 mètres d’altitude montre des fortes variations de température, des intensités lumineuses très élevées (3000 µmol photons m-2 s-1) qui sont connues pour générer un état de réduction importante de la chaine de transport des électrons photosynthétique. Le bon fonctionnement du processus photosynthétique est primordial pour les quelques espèces de plantes vasculaires qui sont présentes à l’étage alpin et qui doivent terminer leur cycle de vie lors d’une très courte période de végétation.Soldanella alpina et Ranunculus glacialis sont deux espèces inféodées aux étages alpin et nival. Dans leur site naturel de croissance nous avons mesuré des températures faibles (0.7°C) et fortes (37°C) sous des lumières supérieures à 2500 µmol photons m-2 s-1. Chez les espèces non-alpines ces conditions induisent la photoinhibition du PSII, ce qui est évité chez S. alpina et R. glacialis, par des mécanismes très différents. Les systèmes antioxydants et le quenching non photochimique sont particulièrement importants chez S. alpina. Chez Ranunculus glacialis, la photorespiration reste très importante et un contenu élevé en PTOX est décrit. Le rôle des antioxydants et de la PTOX dans la photoprotection des deux espèces ont été étudiés. Dans une partie de thèse, nous avons montré qu’une diminution de la capacité antioxydante par une diminution de la concentration en glutathion n’affecte pas la tolérance vis-à -vis de la photoinhibition à basse température. Dans une deuxième partie les résultats supposent qu’une surexpression de la PTOX chez le tabac augmente la photoinhibition à lumière forte par production des espèces réactives d’oxygène. En utilisant différentes conditions environnementales de croissance pour Ranunculus glacialis, nous avons pu montrer que l’expression de la PTOX est induite par des fortes lumières et non par des basses températures. Grâce à une approche associant mesures d’échanges gazeux et mesures de la fluorescence de la chlorophylle, nous avons montré qu’un flux d’électrons conséquent vers l’oxygène, indépendant de la photorespiration, corrélait avec la présence de la PTOX mais que l’activité de la PTOX sous des conditions qui permettent l’assimilation du CO2 et la photorespiration n’est pas maximale. Grâce à des mesures de fluorescence chlorophyllienne en présence de différents inhibiteurs photosynthétiques, nous avons pu montrer que l’importance de ce flux d’électrons vers l’oxygène corrèle avec la quantité de PTOX présente dans les feuilles, dans des conditions réductrices. Ces résultats nous ont amenés à conclure que chez Ranunculus glacialis, la PTOX peut prendre en charge un flux significatif d’électrons, éviter ainsi l’apparition d’un état réduit de la chaine de transfert photosynthétique, et protéger la plante vis-à -vis de la photoinhibition en agissant comme une valve de sécurité. Ces travaux permettent d’apporter des précisions sur un modèle original de photoprotection, qui a été l’objet de nombreuses controverses.The alpine climate above 2400 meters altitude shows large variations in temperature and very important light intensity (3000 µmol photons m-2 s-1), which are known to generate a state of significant reduction in the photosynthetic electron transport chain. The proper functioning of the photosynthetic process is essential for vascular plants species that are present in this alpine environment and must complete their life cycle within a very short growing season.Soldanella alpina and Ranunculus glacialis are two species restricted to alpine and snow floors. In their natural growth environment we measured very low (0.7 ° C) and high temperature (37 ° C) under lights above 2500 µmol photons m-2 s-1. Among non-alpine species such conditions induce photoinhibition of PSII, which is avoided in S. alpina and R. glacialis, by very different mechanisms. Antioxidant systems and non-photochemical quenching are particularly important in S. alpina. In Ranunculus glacialis, photorespiration remains very important and a high content of PTOX is described. The roles of antioxidants and PTOX in photoprotection of both species were studied.In one part of the thesis, we showed that a decrease in antioxidant capacity by reducing the concentration of glutathione does not affect tolerance to low-temperature photoinhibition. In the second part the results imply that overexpression of PTOX in tobacco enhances photoinhibition by strong light to produce reactive oxygen species.Using different environmental conditions for Ranunculus glacialis growth, we showed that expression of the PTOX is induced by strong light, but not by low temperatures. With an approach combining gas exchange measurements and chlorophyll fluorescence measurements, we showed that an electron flow to oxygen, independent of photorespiration, correlated with the presence of PTOX. Through measures of chlorophyll fluorescence in the presence of various inhibitors photosynthetic, we could show that the importance of this electron flow to oxygen correlates with the amount of PTOX in the leaves, under reducing conditions. These results led us to conclude that in Ranunculus glacialis, the PTOX may support a significant flow of electrons, thus avoiding the appearance of a reduced state of the photosynthetic chain transfer, and protect the plant from photoinhibition, acting as a safety valve. These studies are discussed to help clarify a new pathway of photoprotection, which was the subject of much controversy
Le rôle de la PTOX dans l’acclimatation des plantes alpines aux conditions extrêmes
The alpine climate above 2400 meters altitude shows large variations in temperature and very important light intensity (3000 µmol photons m-2 s-1), which are known to generate a state of significant reduction in the photosynthetic electron transport chain. The proper functioning of the photosynthetic process is essential for vascular plants species that are present in this alpine environment and must complete their life cycle within a very short growing season.Soldanella alpina and Ranunculus glacialis are two species restricted to alpine and snow floors. In their natural growth environment we measured very low (0.7 ° C) and high temperature (37 ° C) under lights above 2500 µmol photons m-2 s-1. Among non-alpine species such conditions induce photoinhibition of PSII, which is avoided in S. alpina and R. glacialis, by very different mechanisms. Antioxidant systems and non-photochemical quenching are particularly important in S. alpina. In Ranunculus glacialis, photorespiration remains very important and a high content of PTOX is described. The roles of antioxidants and PTOX in photoprotection of both species were studied.In one part of the thesis, we showed that a decrease in antioxidant capacity by reducing the concentration of glutathione does not affect tolerance to low-temperature photoinhibition. In the second part the results imply that overexpression of PTOX in tobacco enhances photoinhibition by strong light to produce reactive oxygen species.Using different environmental conditions for Ranunculus glacialis growth, we showed that expression of the PTOX is induced by strong light, but not by low temperatures. With an approach combining gas exchange measurements and chlorophyll fluorescence measurements, we showed that an electron flow to oxygen, independent of photorespiration, correlated with the presence of PTOX. Through measures of chlorophyll fluorescence in the presence of various inhibitors photosynthetic, we could show that the importance of this electron flow to oxygen correlates with the amount of PTOX in the leaves, under reducing conditions. These results led us to conclude that in Ranunculus glacialis, the PTOX may support a significant flow of electrons, thus avoiding the appearance of a reduced state of the photosynthetic chain transfer, and protect the plant from photoinhibition, acting as a safety valve. These studies are discussed to help clarify a new pathway of photoprotection, which was the subject of much controversy.Le climat alpin à plus de 2400 mètres d’altitude montre des fortes variations de température, des intensités lumineuses très élevées (3000 µmol photons m-2 s-1) qui sont connues pour générer un état de réduction importante de la chaine de transport des électrons photosynthétique. Le bon fonctionnement du processus photosynthétique est primordial pour les quelques espèces de plantes vasculaires qui sont présentes à l’étage alpin et qui doivent terminer leur cycle de vie lors d’une très courte période de végétation.Soldanella alpina et Ranunculus glacialis sont deux espèces inféodées aux étages alpin et nival. Dans leur site naturel de croissance nous avons mesuré des températures faibles (0.7°C) et fortes (37°C) sous des lumières supérieures à 2500 µmol photons m-2 s-1. Chez les espèces non-alpines ces conditions induisent la photoinhibition du PSII, ce qui est évité chez S. alpina et R. glacialis, par des mécanismes très différents. Les systèmes antioxydants et le quenching non photochimique sont particulièrement importants chez S. alpina. Chez Ranunculus glacialis, la photorespiration reste très importante et un contenu élevé en PTOX est décrit. Le rôle des antioxydants et de la PTOX dans la photoprotection des deux espèces ont été étudiés. Dans une partie de thèse, nous avons montré qu’une diminution de la capacité antioxydante par une diminution de la concentration en glutathion n’affecte pas la tolérance vis-à -vis de la photoinhibition à basse température. Dans une deuxième partie les résultats supposent qu’une surexpression de la PTOX chez le tabac augmente la photoinhibition à lumière forte par production des espèces réactives d’oxygène. En utilisant différentes conditions environnementales de croissance pour Ranunculus glacialis, nous avons pu montrer que l’expression de la PTOX est induite par des fortes lumières et non par des basses températures. Grâce à une approche associant mesures d’échanges gazeux et mesures de la fluorescence de la chlorophylle, nous avons montré qu’un flux d’électrons conséquent vers l’oxygène, indépendant de la photorespiration, corrélait avec la présence de la PTOX mais que l’activité de la PTOX sous des conditions qui permettent l’assimilation du CO2 et la photorespiration n’est pas maximale. Grâce à des mesures de fluorescence chlorophyllienne en présence de différents inhibiteurs photosynthétiques, nous avons pu montrer que l’importance de ce flux d’électrons vers l’oxygène corrèle avec la quantité de PTOX présente dans les feuilles, dans des conditions réductrices. Ces résultats nous ont amenés à conclure que chez Ranunculus glacialis, la PTOX peut prendre en charge un flux significatif d’électrons, éviter ainsi l’apparition d’un état réduit de la chaine de transfert photosynthétique, et protéger la plante vis-à -vis de la photoinhibition en agissant comme une valve de sécurité. Ces travaux permettent d’apporter des précisions sur un modèle original de photoprotection, qui a été l’objet de nombreuses controverses
Le rĂ´le de la PTOX dans l'acclimatation des plantes alpines aux conditions extrĂŞmes
Le climat alpin à plus de 2400 mètres d altitude montre des fortes variations de température, des intensités lumineuses très élevées (3000 mol photons m-2 s-1) qui sont connues pour générer un état de réduction importante de la chaine de transport des électrons photosynthétique. Le bon fonctionnement du processus photosynthétique est primordial pour les quelques espèces de plantes vasculaires qui sont présentes à l étage alpin et qui doivent terminer leur cycle de vie lors d une très courte période de végétation.Soldanella alpina et Ranunculus glacialis sont deux espèces inféodées aux étages alpin et nival. Dans leur site naturel de croissance nous avons mesuré des températures faibles (0.7C) et fortes (37C) sous des lumières supérieures à 2500 mol photons m-2 s-1. Chez les espèces non-alpines ces conditions induisent la photoinhibition du PSII, ce qui est évité chez S. alpina et R. glacialis, par des mécanismes très différents. Les systèmes antioxydants et le quenching non photochimique sont particulièrement importants chez S. alpina. Chez Ranunculus glacialis, la photorespiration reste très importante et un contenu élevé en PTOX est décrit. Le rôle des antioxydants et de la PTOX dans la photoprotection des deux espèces ont été étudiés. Dans une partie de thèse, nous avons montré qu une diminution de la capacité antioxydante par une diminution de la concentration en glutathion n affecte pas la tolérance vis-à -vis de la photoinhibition à basse température. Dans une deuxième partie les résultats supposent qu une surexpression de la PTOX chez le tabac augmente la photoinhibition à lumière forte par production des espèces réactives d oxygène. En utilisant différentes conditions environnementales de croissance pour Ranunculus glacialis, nous avons pu montrer que l expression de la PTOX est induite par des fortes lumières et non par des basses températures. Grâce à une approche associant mesures d échanges gazeux et mesures de la fluorescence de la chlorophylle, nous avons montré qu un flux d électrons conséquent vers l oxygène, indépendant de la photorespiration, corrélait avec la présence de la PTOX mais que l activité de la PTOX sous des conditions qui permettent l assimilation du CO2 et la photorespiration n est pas maximale. Grâce à des mesures de fluorescence chlorophyllienne en présence de différents inhibiteurs photosynthétiques, nous avons pu montrer que l importance de ce flux d électrons vers l oxygène corrèle avec la quantité de PTOX présente dans les feuilles, dans des conditions réductrices. Ces résultats nous ont amenés à conclure que chez Ranunculus glacialis, la PTOX peut prendre en charge un flux significatif d électrons, éviter ainsi l apparition d un état réduit de la chaine de transfert photosynthétique, et protéger la plante vis-à -vis de la photoinhibition en agissant comme une valve de sécurité. Ces travaux permettent d apporter des précisions sur un modèle original de photoprotection, qui a été l objet de nombreuses controverses.The alpine climate above 2400 meters altitude shows large variations in temperature and very important light intensity (3000 mol photons m-2 s-1), which are known to generate a state of significant reduction in the photosynthetic electron transport chain. The proper functioning of the photosynthetic process is essential for vascular plants species that are present in this alpine environment and must complete their life cycle within a very short growing season.Soldanella alpina and Ranunculus glacialis are two species restricted to alpine and snow floors. In their natural growth environment we measured very low (0.7 C) and high temperature (37 C) under lights above 2500 mol photons m-2 s-1. Among non-alpine species such conditions induce photoinhibition of PSII, which is avoided in S. alpina and R. glacialis, by very different mechanisms. Antioxidant systems and non-photochemical quenching are particularly important in S. alpina. In Ranunculus glacialis, photorespiration remains very important and a high content of PTOX is described. The roles of antioxidants and PTOX in photoprotection of both species were studied.In one part of the thesis, we showed that a decrease in antioxidant capacity by reducing the concentration of glutathione does not affect tolerance to low-temperature photoinhibition. In the second part the results imply that overexpression of PTOX in tobacco enhances photoinhibition by strong light to produce reactive oxygen species.Using different environmental conditions for Ranunculus glacialis growth, we showed that expression of the PTOX is induced by strong light, but not by low temperatures. With an approach combining gas exchange measurements and chlorophyll fluorescence measurements, we showed that an electron flow to oxygen, independent of photorespiration, correlated with the presence of PTOX. Through measures of chlorophyll fluorescence in the presence of various inhibitors photosynthetic, we could show that the importance of this electron flow to oxygen correlates with the amount of PTOX in the leaves, under reducing conditions. These results led us to conclude that in Ranunculus glacialis, the PTOX may support a significant flow of electrons, thus avoiding the appearance of a reduced state of the photosynthetic chain transfer, and protect the plant from photoinhibition, acting as a safety valve. These studies are discussed to help clarify a new pathway of photoprotection, which was the subject of much controversy.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF
The significance of glutathione for photoprotection at contrasting temperatures in the alpine plant species Soldanella alpina and Ranunculus glacialis.
International audienceThe significance of total glutathione content was investigated in two alpine plant species with highly differing antioxidative scavenging capacity. Leaves of Soldanella alpina and Ranunculus glacialis incubated for 48 h in the presence of buthionine-sulfoximine had 50% lower glutathione contents when compared with leaves incubated in water. The low leaf glutathione content was not compensated for by activation of other components involved in antioxidative protection or electron consumption. However, leaves with normal but not with low glutathione content increased their ascorbate content during high light (HL) treatment (S. alpina) or catalase activity at low temperature (LT) (R. glacialis), suggesting that the mere decline of the leaf glutathione content does not act as a signal to ameliorate antioxidative protection by alternative mechanisms. CO(2)-saturated oxygen evolution was not affected in glutathione-depleted leaves at various temperatures, except at 35°C, thereby increasing the high temperature (HT) sensitivity of both alpine species. Leaves with low and normal glutathione content were similarly resistant to photoinhibition and photodamage during HL treatment at ambient temperature in the presence and absence of paraquat or at LT. However, HL- and HT-induced photoinhibition increased in leaves with low compared to leaves with normal glutathione content, mainly because the recovery after heat inactivation was retarded in glutathione-depleted leaves. Differences in the response of photosystem II (PSII) activity and CO(2)-saturated photosynthesis suggest that PSII is not the primary target during HL inactivation at HT. The results are discussed with respect to the role of antioxidative protection as a safety valve for temperature extremes to which plants are not acclimated
Plastid alternative oxidase (PTOX) promotes oxidative stress when overexpressed in tobacco
International audiencePhotoinhibition and production of reactive oxygen species were studied in tobacco plants overexpressing the plastid terminal oxidase (PTOX). In high light, these plants was more susceptible to photoinhibition than wild-type plants. Also oxygen-evolving activity of isolated thylakoid membranes from the PTOX-overexpressing plants was more strongly inhibited in high light than in thylakoids from wild-type plants. In contrast in low light, in the PTOX overexpressor, the thylakoids were protected against photoinhibition while in wild type they were significantly damaged. The production of superoxide and hydroxyl radicals was shown by EPR spin-trapping techniques in the different samples. Superoxide and hydroxyl radical production was stimulated in the overexpressor. Two-thirds of the superoxide production was maintained in the presence of DNP-INT, an inhibitor of the cytochrome b(6)f complex. No increase of the SOD content was observed in the overexpressor compared with the wild type. We propose that superoxide is produced by PTOX in a side reaction and that PTOX can only act as a safety valve under stress conditions when the generated superoxide is detoxified by an efficient antioxidant syste
Plastid terminal oxidase (PTOX) has the potential to act as a safety valve for excess excitation energy in the alpine plant species Ranunculus glacialis L.
International audienceRanunculus glacialis leaves were tested for their plastid terminal oxidase (PTOX) content and electron flow to photorespiration and to alternative acceptors. In shade-leaves, the PTOX and NAD(P)H dehydrogenase (NDH) content were markedly lower than in sun-leaves. Carbon assimilation/light and C(i) response curves were not different in sun- and shade-leaves, but photosynthetic capacity was the highest in sun-leaves. Based on calculation of the apparent specificity factor of ribulose 1*5-bisphosphate carboxylase/oxygenase (Rubisco), the magnitude of alternative electron flow unrelated to carboxylation and oxygenation of Rubisco correlated to the PTOX content in sun-, shade- and growth chamber-leaves. Similarly, fluorescence induction kinetics indicated more complete and more rapid reoxidation of the plastoquinone (PQ) pool in sun- than in shade-leaves. Blocking electron flow to assimilation, photorespiration and the Mehler reaction with appropriate inhibitors showed that sun-leaves were able to maintain higher electron flow and PQ oxidation. The results suggest that PTOX can act as a safety valve in R. glacialis leaves under conditions where incident photon flux density (PFD) exceeds the growth PFD and under conditions where the plastoquinone pool is highly reduced. Such conditions can occur frequently in alpine climates due to rapid light and temperature changes
Photoperiod affects the phenotype of mitochondrial complex I mutants
Plant mutants for genes encoding subunits of mitochondrial complex I (CI; NADH:ubiquinone oxidoreductase), the first enzyme of the respiratory chain, display various phenotypes depending on growth conditions. Here, we examined the impact of photoperiod, a major environmental factor controlling plant development, on two Arabidopsis (Arabidopsis thaliana) CI mutants: a new insertion mutant interrupted in both ndufs8.1 and ndufs8.2 genes encoding the NDUFS8 subunit and the previously characterized ndufs4 CI mutant. In the long day (LD) condition, both ndufs8.1 and ndufs8.2 single mutants were indistinguishable from Columbia-0 at phenotypic and biochemical levels, whereas the ndufs8.1 ndufs8.2 double mutant was devoid of detectable holo-CI assembly/activity, showed higher alternative oxidase content/activity, and displayed a growth retardation phenotype similar to that of the ndufs4 mutant. Although growth was more affected in ndufs4 than in ndufs8.1 ndufs8.2 under the short day (SD) condition, both mutants displayed a similar impairment of growth acceleration after transfer to LD compared with the wild type. Untargeted and targeted metabolomics showed that overall metabolism was less responsive to the SD-to-LD transition in mutants than in the wild type. The typical LD acclimation of carbon and nitrogen assimilation as well as redox-related parameters was not observed in ndufs8.1 ndufs8. Similarly, NAD(H) content, which was higher in the SD condition in both mutants than in Columbia-0, did not adjust under LD. We propose that altered redox homeostasis and NAD(H) content/redox state control the phenotype of CI mutants and photoperiod acclimation in Arabidopsi