123 research outputs found

    Property and prejudice: How racial attitudes and social-evaluative concerns shape property appraisals

    Get PDF
    Property evaluations rarely occur in the absence of social context. However, no research has investigated how intergroup processes related to prejudice extend to concepts of property. In the present research, we propose that factors such as group status, prejudice and pressure to mask prejudiced attitudes affect how people value the property of racial ingroup and outgroup members. In Study 1, White American and Asian American participants were asked to appraise a hand-painted mug that was ostensibly created by either a White or an Asian person. Asian participants demonstrated an ingroup bias. White participants showed an outgroup bias, but this effect was qualified. Specifically, among White participants, higher racism towards Asian Americans predicted higher valuations of mugs created by Asian people. Study 2 revealed that White Americans' prejudice towards Asian Americans predicted higher valuations of the mug created by an Asian person only when participants were highly concerned about conveying a non-prejudiced personal image. Our results suggest that, ironically, prejudiced majority group members evaluate the property of minority group members whom they dislike more favourably. The current findings provide a foundation for melding intergroup relations research with research on property and ownership. © 2015 John Wile

    Enhancing surgical performance in cardiothoracic surgery with innovations from computer vision and artificial intelligence: a narrative review

    Get PDF
    \ua9 The Author(s) 2024. When technical requirements are high, and patient outcomes are critical, opportunities for monitoring and improving surgical skills via objective motion analysis feedback may be particularly beneficial. This narrative review synthesises work on technical and non-technical surgical skills, collaborative task performance, and pose estimation to illustrate new opportunities to advance cardiothoracic surgical performance with innovations from computer vision and artificial intelligence. These technological innovations are critically evaluated in terms of the benefits they could offer the cardiothoracic surgical community, and any barriers to the uptake of the technology are elaborated upon. Like some other specialities, cardiothoracic surgery has relatively few opportunities to benefit from tools with data capture technology embedded within them (as is possible with robotic-assisted laparoscopic surgery, for example). In such cases, pose estimation techniques that allow for movement tracking across a conventional operating field without using specialist equipment or markers offer considerable potential. With video data from either simulated or real surgical procedures, these tools can (1) provide insight into the development of expertise and surgical performance over a surgeon’s career, (2) provide feedback to trainee surgeons regarding areas for improvement, (3) provide the opportunity to investigate what aspects of skill may be linked to patient outcomes which can (4) inform the aspects of surgical skill which should be focused on within training or mentoring programmes. Classifier or assessment algorithms that use artificial intelligence to ‘learn’ what expertise is from expert surgical evaluators could further assist educators in determining if trainees meet competency thresholds. With collaborative efforts between surgical teams, medical institutions, computer scientists and researchers to ensure this technology is developed with usability and ethics in mind, the developed feedback tools could improve cardiothoracic surgical practice in a data-driven way

    Pilot Study of the Physiological Effects of an Integrative Medicine Approach in Irritable Bowel Syndrome

    Get PDF
    Introduction: Irritable Bowel Syndrome (IBS) is the most common GI functional disease in the US, affecting 10-25% of the population and costing ~$1.6B in annual healthcare spending. Defined by varied GI symptoms, IBS is associated with gut inflammation from many factors, including diet, microbiome imbalances, and stress. However, the disease lacks a treatment algorithm, especially within integrative medicine. Objective: This research explores integrative medicine approaches to IBS, including diet and supplements, to identify microbiome and symptom patterns before and after intervention. Methods: Patients first complete surveys on diet and symptoms, the Beck depression inventory, the SF-36 questionnaire, PET-MRI imaging, and stool samples. Next, patients are counseled on the intervention, including diet, Proguard 100 probiotic (1 capsule/day), Glutacore powder (1 scoop/day), and Fiber Boost (1-3 capsules/day as tolerated). After two months, patients return for follow-up surveys, imaging, and stool samples. Results: Data from two patients is available. Both patients demonstrated reduced Ruminococcus species, causing a low Firmicutes:Bacteroidetes (FB) ratio. Patients showed increased inflammatory markers (eg. fecal secretory IgA) and abnormal short-chain fatty acid ratios. Both patients were negative for parasites, ova, and occult blood. Conclusion: Other IBS studies found high FB ratios, which our data contrasted with abnormally low ratios. Further diet and symptom analysis is needed to understand the drivers of this ratio and how species affect colonic fermentation and absorption. The small sample size hinders understanding of whether this conflicting data is consistent across patients or if it is outlying

    The influence of intrapersonal sensorimotor experiences on the corticospinal responses during action-observation

    Get PDF
    The coupling of perception and action has been strongly indicated by evidence that the observation of an action primes a response in the observer. It has been proposed that these primed responses may be inhibited when the observer is able to more closely distinguish between self- and other-generated actions – the greater the distinction, then the greater the inhibition of the primed response. This self–other distinction is shown to be enhanced following a period of visual feedback of self-generated action. The present study was designed to examine how sensorimotor experiences pertaining to self-generated action affect primed responses from observed actions. Single-pulse transcranial magnetic stimulation was used to investigate corticospinal activity elicited during the observation of index- and little-finger actions before and after training (self-generated action). For sensorimotor training, participants executed finger movements with or without visual feedback of their own movement. Results showed that the increases in muscle-specific corticospinal activity elicited from action–observation persisted after training without visual feedback, but did not emerge following training with visual feedback. This inhibition in corticospinal activity during action–observation following training with vision could have resulted from the refining of internal models of self-generated action, which then led to a greater distinction between “self” and “other” actions

    The modulation of motor contagion by intrapersonal sensorimotor experience

    Get PDF
    Sensorimotor experiences can modify the internal models for action. These modifications can govern the discrepancies between predicted and actual sensory consequences, such as distinguishing self- and other-generated actions. This distinction may also contribute toward the inhibition of movement interference, which is strongly associated with the coupling of observed and executed actions. Therefore, movement interference could be mediated by the sensorimotor experiences underlying the self-other distinction. The present study examined the impact of sensorimotor experiences on involuntary movement interference (motor contagion). Participants were required to complete a motor contagion paradigm in which they executed horizontal arm movements while observing congruent (horizontal) or incongruent (vertical) arm movements of a model. This task was completed before and after a training protocol in which participants executed the same horizontal arm movements in the absence of the model stimuli. Different groups of participants trained with or without vision of their moving limb. Analysis of participants who were predisposed to motor contagion (involuntary movement interference during the observation of incongruent movements) revealed that the no vision group continued to demonstrate contagion at post-training, although the vision group did not. We propose that the vision group were able to integrate the visual afferent information with an internal model for action, which effectively refines the ability to match self-produced afferent and efferent sources of information during response-execution. This enhanced matching allows for a better distinction between self and other, which in turn, mediates the inhibition of motor contagion

    Self-prioritization and perceptual matching: The effects of temporal construal.

    Get PDF
    Recent research has revealed that self-referential processing enhances perceptual judgments - the so-called self-prioritization effect. The extent and origin of this effect remains unknown, however. Noting the multifaceted nature of the self, here we hypothesized that temporal influences on self-construal (i.e., past/future-self continuity) may serve as an important determinant of stimulus prioritization. Specifically, as representations of the self increase in abstraction as a function of temporal distance (i.e., distance from now), self-prioritization may only emerge when stimuli are associated with the current self. The results of three experiments supported this prediction. Self-relevance only enhanced performance in a standard perceptual-matching task when stimuli (i.e., geometric shapes) were connected with the current self; representations of the self in the future (Expts. 1 & 2) and past (Expt. 3) failed to facilitate decision making. To identify the processes underlying task performance, data were interrogated using a hierarchical drift diffusion model (HDDM) approach. Results of these analyses revealed that self-prioritization was underpinned by a stimulus bias (i.e., rate of information uptake). Collectively, these findings elucidate when and how self-relevance influences decisional processing

    Dissociation between the Activity of the Right Middle Frontal Gyrus and the Middle Temporal Gyrus in Processing Semantic Priming

    Get PDF
    The aim of this event-related functional magnetic resonance imaging (fMRI) study was to test whether the right middle frontal gyrus (MFG) and middle temporal gyrus (MTG) would show differential sensitivity to the effect of prime-target association strength on repetition priming. In the experimental condition (RP), the target occurred after repetitive presentation of the prime within an oddball design. In the control condition (CTR), the target followed a single presentation of the prime with equal probability of the target as in RP. To manipulate semantic overlap between the prime and the target both conditions (RP and CTR) employed either the onomatopoeia “oink” as the prime and the referent “pig” as the target (OP) or vice-versa (PO) since semantic overlap was previously shown to be greater in OP. The results showed that the left MTG was sensitive to release of adaptation while both the right MTG and MFG were sensitive to sequence regularity extraction and its verification. However, dissociated activity between OP and PO was revealed in RP only in the right MFG. Specifically, target “pig” (OP) and the physically equivalent target in CTR elicited comparable deactivations whereas target “oink” (PO) elicited less inhibited response in RP than in CTR. This interaction in the right MFG was explained by integrating these effects into a competition model between perceptual and conceptual effects in priming processing

    Marine Biodiversity in the Australian Region

    Get PDF
    The entire Australian marine jurisdictional area, including offshore and sub-Antarctic islands, is considered in this paper. Most records, however, come from the Exclusive Economic Zone (EEZ) around the continent of Australia itself. The counts of species have been obtained from four primary databases (the Australian Faunal Directory, Codes for Australian Aquatic Biota, Online Zoological Collections of Australian Museums, and the Australian node of the Ocean Biogeographic Information System), but even these are an underestimate of described species. In addition, some partially completed databases for particular taxonomic groups, and specialized databases (for introduced and threatened species) have been used. Experts also provided estimates of the number of known species not yet in the major databases. For only some groups could we obtain an (expert opinion) estimate of undiscovered species. The databases provide patchy information about endemism, levels of threat, and introductions. We conclude that there are about 33,000 marine species (mainly animals) in the major databases, of which 130 are introduced, 58 listed as threatened and an unknown percentage endemic. An estimated 17,000 more named species are either known from the Australian EEZ but not in the present databases, or potentially occur there. It is crudely estimated that there may be as many as 250,000 species (known and yet to be discovered) in the Australian EEZ. For 17 higher taxa, there is sufficient detail for subdivision by Large Marine Domains, for comparison with other National and Regional Implementation Committees of the Census of Marine Life. Taxonomic expertise in Australia is unevenly distributed across taxa, and declining. Comments are given briefly on biodiversity management measures in Australia, including but not limited to marine protected areas

    Rapid geomagnetic changes inferred from Earth observations and numerical simulations

    Get PDF
    Extreme variations in the direction of Earth’s magnetic field contain important information regarding the operation of the geodynamo. Paleomagnetic studies have reported rapid directional changes reaching 1° yr⁻¹, although the observations are controversial and their relation to physical processes in Earth’s core unknown. Here we show excellent agreement between amplitudes and latitude ranges of extreme directional changes in a suite of geodynamo simulations and a recent observational field model spanning the past 100 kyrs. Remarkably, maximum rates of directional change reach ~10° yr⁻¹, typically during times of decreasing field strength, almost 100 times faster than current changes. Detailed analysis of the simulations and a simple analogue model indicate that extreme directional changes are associated with movement of reversed flux across the core surface. Our results demonstrate that such rapid variations are compatible with the physics of the dynamo process and suggest that future searches for rapid directional changes should focus on low latitudes
    corecore