224 research outputs found

    La conversación interrumpida

    Get PDF
    Este texto se ha incluido en el libro "A este lado del faro" (trad. del italiano por M.A. Cuevas, Parténope, Alicante, 2008)

    COVID-19 dentistry-related aspects: a literature overview

    Get PDF
    A new coronavirus (Sars-CoV-2) was detected in China at the end of 2019 and has since caused a worldwide pandemic. This virus is responsible for an acute respiratory syndrome (COVID-19), distinguished by a potentially lethal interstitial bilateral pneumonia. Because Sars-CoV-2 is highly infective through airborne contamination, the high infection risk in the dental environment is a serious problem for both professional practitioners and patients. This literature overview provides a description of the clinical aspects of COVID-19 and its transmission, while supplying valuable information regarding protection and prevention measures

    Numerical 3D simulation of a full system air core compulsator-electromagnetic rail launcher

    Get PDF
    Multiphysics problems represent an open issue in numerical modeling. Electromagnetic launchers represent typical examples that require a strongly coupled magnetoquasistatic and mechanical approach. This is mainly due to the high velocities which make comparable the electrical and the mechanical response times. The analysis of interacting devices (e.g., a rail launcher and its feeding generator) adds further complexity, since in this context the substitution of one device with an electric circuit does not guarantee the accuracy of the analysis. A simultaneous full 3D electromechanical analysis of the interacting devices is often required. In this paper a numerical 3D analysis of a full launch system, composed by an air-core compulsator which feeds an electromagnetic rail launcher, is presented. The analysis has been performed by using a dedicated, in-house developed research code, named "EN4EM" (Equivalent Network for Electromagnetic Modeling). This code is able to take into account all the relevant electromechanical quantities and phenomena (i.e., eddy currents, velocity skin effect, sliding contacts) in both the devices. A weakly coupled analysis, based on the use of a zero-dimensional model of the launcher (i.e., a single loop electrical equivalent circuit), has been also performed. Its results, compared with those by the simultaneous 3D analysis of interacting devices, show an over-estimate of about 10-15% of the muzzle speed of the armature

    Combined frequency-amplitude nonlinear modulation: theory and applications

    Full text link
    In this work we formulate a generalized theoretical model to describe the nonlinear dynamics observed in combined frequency-amplitude modulators whose characteristic parameters exhibit a nonlinear dependence on the input modulating signal. The derived analytical solution may give a satisfactory explanation of recent laboratory observations on magnetic spin-transfer oscillators and fully agrees with results of micromagnetic calculations. Since the theory has been developed independently of the mechanism causing the nonlinearities, it may encompass the description of modulation processes of any physical nature, a promising feature for potential applications in the field of communication systems.Comment: 8 pages, 4 figures, to be published on IEEE Transactions on Magnetic

    Rabbi-Baldi Cabanillas, Renato (coord.). Lecciones de teoría del derecho : una visión desde la jurisprudencia constitucional

    Get PDF
    Fil: Consolo, Maximiliano V. J. Universidad de Buenos Aires. Facultad de Derecho. Cátedra Teoría General del Derecho. Buenos Aires, ArgentinaFil: Consolo, Maximiliano V. J. Universidad de Buenos Aires. Facultad de Derecho. Cátedra Filosofía del Derecho. Buenos Aires, Argentin

    The role of matrix metalloproteinases in periodontal disease

    Get PDF
    This review provides a detailed description of matrix metalloproteinases (MMPs), focusing on those that are known to have critical roles in bone and periodontal disease. Periodontal disease is an inflammatory process initiated by anaerobic bacteria, which promote the host immune response in the form of a complex network of molecular pathways involving proinflammatory mediators such as cytokines, growth factors, and MMPs. MMPs are a family of 23 endopeptidases, collectively capable of degrading virtually all extracellular matrix (ECM) components. This study critically discusses the available research concerning the involvement of the MMPs in periodontal disease development and progression and presents possible therapeutic strategies. MMPs participate in morphogenesis, physiological tissue turnover, and pathological tissue destruction. Alterations in the regulation of MMP activity are implicated in the manifestation of oral diseases, and MMPs comprise the most important pathway in tissue destruction associated with periodontal disease. MMPs can be considered a risk factor for periodontal disease, and measurements of MMP levels may be useful markers for early detection of periodontitis and as a tool to assess prognostic follow-ups. Detection and inhibition of MMPs could, therefore, be useful in periodontal disease prevention or be an essential part of periodontal disease therapy, which, considering the huge incidence of the disease, may greatly improve oral health globally

    A dynamic distention protocol for whole-organ bladder decellularization: histological and biomechanical characterization of the acellular matrix

    Get PDF
    A combined physical\u2013chemical protocol for whole full-thickness bladder decellularization is proposed, based on organ cyclic distention through repeated infusion/withdrawal of the decellularization agents through the urethra. The dynamic decellularization was intended to enhance cell removal efficiency, facilitating the delivery of detergents within the inner layers of the tissue and the removal of cell debris. The use of mild chemical detergents (hypotonic solution and non-ionic detergent) was employed to limit adverse effects upon matrix 3D ultrastructure. Inspection of the presence of residual DNA and RNA was carried out on decellularized matrices to verify effective cell removal. Histological investigation was focused on assessing the retention of adequate structural and functional components that regulate the biomechanical behaviour of the acellular tissue. Biomechanical properties were evaluated through uniaxial tensile loading tests of tissue strips and through ex vivo filling cystometry to evaluate the whole-organ mechanical response to a physiological-like loading state. According to our results, a dynamic decellularization protocol of 17 h duration with a 5 ml/min detergent infusion flow rate revealed higher DNA removal efficiency than standard static decellularization, resulting in residual DNA content\u2009<\u200950 ng/mg dry tissue weight. Furthermore, the collagen network and elastic fibres distribution were preserved in the acellular ECM, which exhibited suitable biomechanical properties in the perspective of its future use as an implant for bladder augmentation
    corecore