117 research outputs found

    Binding Properties of a Dinuclear Zinc(II) Salen-Type Molecular Tweezer with a Flexible Spacer in the Formation of Lewis Acid-Base Adducts with Diamines

    Get PDF
    In this paper we report the binding properties, by combined 1H NMR, optical absorption, and fluorescence studies, of a molecular tweezer composed of two Zn(salen)-type Schiff-base units connected by a flexible spacer, towards a series of ditopic diamines having a strong Lewis basicity, with different chain length and rigidity. Except for the 1,2-diaminoethane, in all other cases the formation of stable 1:1 Lewis acid-base adducts with large binding constants is demonstrated. For α,ω-aliphatic diamines, binding constants progressively increase with the increasing length of the alkyl chain, thanks to the flexible nature of the spacer and the parallel decreased conformational strain upon binding. Stable adducts are also found even for short diamines with rigid molecular structures. Given their preorganized structure, these latter species are not subjected to loss of degrees of freedom. The binding characteristics of the tweezer have been exploited for the colorimetric and fluorometric selective and sensitive detection of piperazine

    Factors Affecting the Efficiency of Excited-States Interactions of Complexes between Some Visible Light-Emitting Lanthanide Ions and Cyclophanes Containing Spirobiindanol Phosphonates

    Get PDF
    The efficiency of excited-states interactions between lanthanide ions Tb3+ and Eu3+ and some new cyclophanes (I, II, and III) has been studied in different media. High luminescence quantum yield values for terbium and europium complexes in DMSO and PMMA were obtained. The photophysical properties of the green and red emissive Tb3+ and Eu3+ complexes have been elucidated, respectively

    ECMO for COVID-19 patients in Europe and Israel

    Get PDF
    Since March 15th, 2020, 177 centres from Europe and Israel have joined the study, routinely reporting on the ECMO support they provide to COVID-19 patients. The mean annual number of cases treated with ECMO in the participating centres before the pandemic (2019) was 55. The number of COVID-19 patients has increased rapidly each week reaching 1531 treated patients as of September 14th. The greatest number of cases has been reported from France (n = 385), UK (n = 193), Germany (n = 176), Spain (n = 166), and Italy (n = 136) .The mean age of treated patients was 52.6 years (range 16–80), 79% were male. The ECMO configuration used was VV in 91% of cases, VA in 5% and other in 4%. The mean PaO2 before ECMO implantation was 65 mmHg. The mean duration of ECMO support thus far has been 18 days and the mean ICU length of stay of these patients was 33 days. As of the 14th September, overall 841 patients have been weaned from ECMO support, 601 died during ECMO support, 71 died after withdrawal of ECMO, 79 are still receiving ECMO support and for 10 patients status n.a. . Our preliminary data suggest that patients placed on ECMO with severe refractory respiratory or cardiac failure secondary to COVID-19 have a reasonable (55%) chance of survival. Further extensive data analysis is expected to provide invaluable information on the demographics, severity of illness, indications and different ECMO management strategies in these patients

    On the Aggregation and Sensing Properties of Zinc(II) Schiff-Base Complexes of Salen-Type Ligands

    No full text
    The zinc(II) ion forms stable complexes with a wide variety of ligands, but those related to Schiff-bases are among the most largely investigated. This review deals with the peculiar aggregation characteristics of Zn(II) Schiff-base complexes from tetradentate N2O2 salen-type ligands, L, derivatives from salicylaldehydes and 1,2-diamines, and is mostly focused on their spectroscopic properties in solution. Thanks to their Lewis acidic character, ZnL complexes show interesting structural, nanostructural, and aggregation/deaggregation properties in relation to the absence/presence of a Lewis base. Deaggregation of these complexes is accompanied by relevant changes of their spectroscopic properties that can appropriately be exploited for sensing Lewis bases. Thus, ZnL complexes have been investigated as chromogenic and fluorogenic chemosensors of charged and neutral Lewis bases, including cell imaging, and have shown to be selective and sensitive to the Lewis basicity of the involved species. From these studies emerges that these popular, Lewis acidic bis(salicylaldiminato)Zn(II) Schiff-base complexes represent classical coordination compounds for modern applications

    Supramolecular Aggregation of a New Substituted Bis(salicylaldiminato)zinc(II) Schiff-Base Complex Derived from trans-1,2-Diaminocyclohexane

    No full text
    In this contribution is reported the synthesis, characterization, and aggregation properties in solution of a novel Zn(II) complex, (R)-2, derived from the enantiopure chiral trans-1,2-diaminocyclohexane and a substituted salicylaldehyde. Detailed 1H NMR, DOSY NMR, optical absorption, and circular dichroism spectroscopic studies and chemical evidence allowed to investigate the nature of aggregate species in solution. The high solubility of (R)-2 in solution of the non-coordinating chloroform solvent leads to formation of various aggregates, some of them consisting of large oligomers estimated to contain up to 27 monomeric units. The chiral trans-stereochemistry of the bridging diamine favors a different aggregation mode in these complexes, both in the oligomers and dimers, involving a tetrahedral coordination geometry around the metal center. Overall data suggest the formation of helical oligomers, (ZnL)n, in freshly prepared chloroform solutions which, by standing or heating, evolve towards a more thermodynamically stable, dinuclear double-helicate Zn2L2 dimer
    • …
    corecore