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The efficiency of excited-states interactions between lanthanide ions Tb3+ and Eu3+ and some new cyclophanes (I, II, and III) has
been studied in different media. High luminescence quantum yield values for terbium and europium complexes in DMSO and
PMMA were obtained. The photophysical properties of the green and red emissive Tb3+ and Eu3+ complexes have been elucidated,
respectively.

Copyright © 2007 M. S. Attia et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Lanthanide ions, particularly Tb3+ and Eu3+, are popular lu-
minescent probes for the development of fluoroimmunoas-
says [1–6]. Their photophysical properties, narrow line lu-
minescence with long lifetimes, are attractive in comparison
with the broad luminescence of the organic fluorescent dyes.
The disadvantage of low absorption coefficients of the lan-
thanides can be overcome by the introduction of ligands that
act as light-harvesting centers (LHCs) to sensitize the lan-
thanide emission [7–13]. Chelating agents commonly used
for enhancement of lanthanides include bidentate ligands,
such as β-diketonates [14–17], tridentate pyridines, such as
an amide-based open-chain crown ether ligand [18], and
open-chain carboxylate crown ether ligands [19]. In addi-
tion, the energy transfer (ET) from donor ligands to accep-
tor lanthanide ions in macrocyclic polyether complexes of
lanthanides has been studied [20–23]. In these complexes,
the excitation energy (excitation of the ligand in the first
excited singlet state) either in the ultraviolet or in the visi-
ble region is converted to a narrow band 4f/4f emission of
the acceptor rare earth (RE) ions. The energy transfer (ET)
could take place through the singlet state [24] or the lowest

triplet (T1) state [25–27] of an aromatic unit acting as lig-
and.

Chiral cyclophanes containing ancillary groups are able
to act as powerful binding sites for large variety of natural
guests in polar solvents. These compounds found to have a
cavity not large enough to include bulk guests [28].

In the present paper, the absorption and the emis-
sion spectroscopic properties of new cyclophanes containing
spirobiindanol phosphonates derivatives (I, II, and III) and
their Ln(III) complexes in different solvents were studied and
discussed. Also, the sensitization of Ln(III) by this new type
of ligands in solution and in thin films of polymer matrix was
investigated.

2. EXPERIMENTAL

The metal nitrates (Aldrich, 99.99%) were used as received.
Pure grade (Aldrich) solvents were used. Cyclophanes con-
taining spirobiindanol phosphonates derivatives (I, II, and
III) were synthesized according to methods described before
[29]. The solutions of complexes were prepared by the addi-
tion of metal nitrate (typical concentration: 8 � 10�5 M) to
2� 10�5 M of cyclophanes in different solvents.
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Polymethylmethacrylate (PMMA) was used as received.
PMMA matrix was prepared by dissolving 5 gm PMMA in
25 ml CHCl3 at 30ÆC with vigorous stirring for 15 minutes,
then Eu and Tb-cyclophanes complexes were incorporated
into PMMA matrix at 30ÆC under vigorous stirring for 15
minutes. The PMMA matrix was left to dry for two days at
room temperature to obtain PMMA thin film. The thickness
of the thin film was measured by micrometer and it was equal
to 0.25 mm. (The concentration of the complexes in the ma-
trix were not determined.)

UV and visible absorption spectra were measured at
room temperature using λ-Helios SP Pye-Unicam spec-
trophotometer.

Luminescence spectra were measured using Shimadzu
RF5301 (PC) spectrofluorophotometer. Luminescence quan-
tum yield (ΦL) determinations in different solvents were ob-
tained using the following equation: [30]

Φ L =
[(

F(υ�) � A0
λe � n2

)
(
F0

(υ�) � Aλe � n2
0

)
]
�Φ0

L, (1)

where A0
λe, F0

(υ�), n2
0, and Φ0

L are the absorbance at the exciting
wavelength, the area under the emission spectrum, the re-
fractive index of the solvent (quinine sulfate in 0.5 M H2SO4

(n = 1.338) and rhodamine101 in ethanol (n = 1.329)), and
quantum yield (1 for rhodamine101 in ethanol and 0.546
for quinine sulphate in 1 M H2SO4) of the reference, respec-
tively. Aλe, F(υ�), n2, and ΦL are the absorbance at the excita-
tion wavelength, the area under the emission spectrum, the
refractive index of the solvent, and quantum yield of the un-
known, respectively.

Estimation of the apparent association constant (Kapp) of
(Tb3+ and Eu3+ with I, II, and III) complexes in DMSO using
Benesi-Hildebrand-type plot (see [31]):

1
Aobs � A0

= 1
Ac � A0

+
1

Kapp
(
Ac � A0

)
[M]

, (2)

where A0, Ac, Aobs, Kapp, and [M] are the absorbance of the
ligand, the absorbance of the complex, the absorbance of the
ligand at various concentrations of the metal ion, the forma-
tion constant, and the concentration of the metal ion, respec-
tively.
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Figure 1: Absorption spectra of (1) 2� 10�5 M of (II) in methanol
and (2) 2� 10�5 M of (II) in the presence of 8� 10�5 M of Eu3+.

3. RESULT AND DISCUSSION

3.1. Absorption spectra

The absorption spectra of 2 � 10�5 M for the ligands (I, II,
and III) in methanol show shoulder in the UV at 240 nm,
with molar absorptivity coefficient (ε = 11850, 11500, and
8600 M�1 cm�1), respectively. These bands are attributed to
π-π� transitions in pyridine, benzene, and o-xylene moi-
eties, respectively. The longest wavelength at 290 nm may be
due to n-π� transition in the ligands. Upon complexation of
lanthanide ion, no red shift is observed in n-π� transition
(Figure 1). indicating a very weak ion-dipole interaction in
this solvent between lanthanide ion and the oxygen atoms in
the ring of cyclophanes [32].

The ion titration revealed that the complex formed M : L
(4 : 1) for compound I and II and 5 : 1 for compound III,
which indicates that the metal may coordinate to the ligand
from different coordination sites and not only through oxy-
gen of the cage.
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Table 1: Estimation of apparent formation constant of Tb3+ and
Eu3+ in the presence of I, II, and III using Benesi-Hildebrand plot in
methanol at 25ÆC.

Lanthanide ion Compound Kapp K M�1

Tb3+

I 2.90

II 6.50

III 10.8

Eu3+

I 1.10

II 3.20

III 7.40
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Figure 2: Luminescence emission spectra of 8 � 10�5 M of Tb3+ in
the presence of 2� 10�5 M of (I) in (1) DMSO and (2) ethylacetate
at λex = 330 nm.

The unusual stability of lanthanide ions with diethoxy-
phosphonate cyclophanes that have one or two binding sites
is dominated by two primary factors: (1) ion-dipole interac-
tion between metal ion and cyclophanes donating oxygens,
and (2) long-range interaction between metal ion and ethoxy
group [32]. It can be considered that the outer-sphere inter-
action between ethoxy group and metal ion can contribute
to the complexation stability.

Absorption at wavelength = 290 nm, as a measure of the
complex concentration, increases with metal ion concentra-
tion and high K formation values in case of Tb3+ (small size
= 1.0 Å) compared with Eu3+ (large size = 1.066 Å) and
[Mn+] = 8� 10�5 M; see Table 1 and [33].

3.2. Solvent effect on the luminescence spectra of
lanthanide ion crown ether complexes

Figures 2 and 3 show the emission spectra of Tb3+-(I) and
Eu3+-(II) complexes in DMSO at λex=330 nm. The emission
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Figure 3: Luminescence emission spectra of 8 � 10�5 M of Eu3+ in
the presence of 2� 10�5 M of (II) in (1) DMSO and (2) acetonitrile
at λex = 330 nm.

bands using Tb3+ and Eu3+ are attributed to different tran-
sitions from (5D4 �

7F6,5D4�
7F5,5 D4 �

7F4, and 5D4 �
7F3) and (5D0 �

7F1,5 D0 �
7F2,5 D0�

7F3, and 5D0 �
7F4),

respectively; see Table 2. Table 3 lists the values of the lumi-
nescence quantum yield in a variety of solvents.

It has found that the values of quantum yield of Tb3+ and
Eu3+ complexes are consistent with the observed Kapp values,
that is, the luminescence quantum yield follows the order M-
(III) > M-(II) > M-(I). This behavior can be explained on the
fact that the largest heavy atom effect (Tb3+ > Eu3+) results
when the metal ion perturber is located along the out-of-
plane axis originating from the center of the benzene chro-
mophore which applies in the case of benzene crown ether
metal ion (Tb3+ and Eu3+) [34]. This in turn was attributed
to the symmetry restrictions which enter the spin-orbit ma-
trix elements via the overlap integrals between π electrons of
benzene and p orbitals of the heavy atom [35–38]. According
to this effect, the triplet (T1) population and radiative decay
of the T1 state should be a maximum in III due to the heavy
atom perturbation [37–40].

The enhanced emission of Tb3+-cyclophanes and Eu3+-
cyclophanes in DMSO, DMF, and CH3CN can be attributed
to the formation of anhydrous solvates, Tb3+-cyclophanes �
n (solvent), and Eu3+-cyclophanes � n (solvent). Introducing
solvent molecules in the first coordination sphere of Tb3+-
cyclophanes and Eu3+-cyclophanes leads to the enhancement
of the intensity of all transitions especially 5D0 �

7F2 and
5D4�

7F5 transitions in Eu3+ and Tb3+, respectively.
By increasing the radiative rate, Tb3+ and Eu3+ excited

states will become less sensitive to deactivation processes, ul-
timately resulting in a more efficiently emissive Tb3+ and
Eu3+ complexes [39]. It can be seen that the luminescence
intensities for the complexes in DMSO, DMF, and CH3CN
solutions are stronger than in methanol as hydroxy sol-
vent. This is attributed to vibrational energy transfer to the
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Table 2: The typical emission bands of the lanthanide ions Eu3+ and Tb3+ in solution.

Ion Transition Emission Ion Transition Emission

Eu3+ 5D0�
7F0 580 nm Tb3+ 5D4�

7F6 490 nm
7F1 590 nm 7F5 545 nm
7F2 613 nm 7F4 590 nm
7F3 650 nm 7F3 620 nm
7F4 700 nm 7F2 650 nm
7F5 750 nm — —
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Figure 4: Energy level diagram for the system of cyclophane com-
plex with Tb(NO3)3 and Eu(NO3)3 showing the likely routes of ET.

solvent molecules. It is well known that the excited state of
the lanthanide ions is efficiently quenched by interactions
with high-energy vibrations like O�H groups thereby the
luminescence of these complexes in �OH containing sol-
vents can be quenched easily because of the O�H oscillators
[40].

Furthermore, the luminescence intensity and the quan-
tum yield values of terbium complexes are higher than those
of europium complexes in all solvents. This attributed to the
fact that the luminescence of Ln3+-chelates is related to the
efficiency of the intramolecular energy transfer between the
triplet level of ligand and the emitting level of the ions, which
depends on the energy gap between the two levels. In the or-
ganic solvents, probably the energy gap between the ligand
triplet levels and the emitting level of the terbium favors to
the energy transfer process for terbium as shown in Figure 4
and Table 2 [41].

3.3. Effect of polymer matrix

To study the effect of rigidity on the efficiency of energy
transfer from the ligands (I, II, and III) to Tb and Eu ions,
the complexes were incorporated in PMMA matrix. The
luminescence quantum yields of the complexes in PMMA
are depicted in Table 3. Comparing the luminescence quan-
tum yield values of the complexes with the highest values
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Figure 5: Luminescence emission spectra of 3 � 10�4 M of Tb3+ in
the presence of (1) 8 � 10�5 M of (I) and (2) 8 � 10�5 M of (II) in
[PMMA= 4 gm/25 ml at λex = 300 nm].

obtained in DMSO solution it can be seen that the quan-
tum yield increased scientifically for complexes with cyclo-
phanes I and II, while it did not change with cyclophane III.
This suggests that energy transfer in PMMA is more efficient
than in any of the studied solvents. The relatively rigid ma-
trix structure has inhibited the vibration of the ligand around
Tb3+ and Eu3+ bringing about a longer luminescence lifetime
and as a result the luminescence quantum yield increases in
PMMA as shown in Figure 5 and Table 3; see [42]. However,
the quantum yield values obtained for Tb3+ or Eu3 complexes
showed no change with cyclophane III. This can be rational-
ized as a decrease in the rotation of the molecule in the ma-
trix making it improbable to host Tb3+ or Eu3+.

3.4. Luminescence mapping

A three-dimensional plot is required for a complete descrip-
tion of the luminescence; see Figures 6 and 7. It may be
presented as a so-called excitation/emission matrix [43, 44].
Furthermore, connection of data points with the same lumi-
nescence intensity (i.e., same height) by lines results in to-
mograms of two-dimensional representation (luminescence
mapping). Such diagrams always represent a top view [45].
This method seems to be useful as a qualitative tool. In par-
ticular, the location and relative intensity of peaks are suitable
parameters for pattern recognition analysis as well as a useful
new method in clinical chemistry and biochemistry [46–48].
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Table 3: Quantum yield values of 8� 10�5 M of Tb3+ and Eu3+ in the presence of 2� 10�5 M of ligands (I, II, and III) in different media, Φ
(�5%).

Complex Methanol Acetonitrile DMSO DMF Ethylacetate PMMA

Tb(I) 0.003 0.015 0.071 0.014 0.007 0.137

Tb(II) 0.041 0.057 0.075 0.058 0.055 0.116

Tb(III) 0.054 0.064 0.109 0.059 0.067 0.110

Eu(I) 0.002 0.010 0.068 0.010 0.003 0.125

Eu(II) 0.011 0.025 0.070 0.047 0.045 0.106

Eu(III) 0.038 0.058 0.089 0.057 0.056 0.099
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Figure 6: 3D view of the emission spectra of Tb3+ ion in Tb-(III)
complex at different excitation wavelengths in DMSO.
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Figure 7: Contour view of the emission spectra of Tb3+ ion in Tb-
(III) complex at different excitation wavelengths in DMSO.
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Figure 8: 3D view of the emission spectra of Eu3+ ion in Eu-(III)
complex at different excitation wavelengths in DMSO.
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Figure 9: Contour view of the emission spectra of Eu3+ ion in Eu-
(III) complex at different excitation wavelengths in DMSO.

The excitation/emission matrix represents the fingerprint
of metal ions (Tb3+ and Eu3+ ions), which is different accord-
ing to different excitation wavelengths; see Figures 8 and 9.

4. CONCLUSION

Cyclophanes containing spirobiindanol phosphonates have
been proven to be efficient light sensitizers for the studied
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lanthanide ions Tb3+ and Eu3+. The luminescence intensi-
ties for the complexes in DMSO, DMF, and CH3CN solutions
are stronger than those in hydroxy solvents as methanol so-
lutions. The further enhancement of the luminescence inten-
sity observed in rigid PMMA reflects the much higher energy
transfer from the ligand to the metal ion due to the hindrance
of vibrational/torsinal deactivation channel.
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troscopic properties and design of highly luminescent lan-
thanide coordination complexes,” Coordination Chemistry Re-
views, vol. 196, no. 1, pp. 165–195, 2000.

[26] M. P. Lowe and D. Parker, “pH switched sensitisation of eu-
ropium(III) by a dansyl group,” Inorganica Chimica Acta,
vol. 317, no. 1-2, pp. 163–173, 2001.
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