1,430 research outputs found
Bromeliad tanks are unique habitats for microbial communities involved in methane turnover
The results indicate that every bromeliad tank is a unique island with respect to its resident microbial community. The presence of methanogens and active methanotrophs in all tank slurries further indicates the potential for both methane formation and methane oxidation.Max Planck Gesellschaft; LOEWE (Synmicro) Programm der hessischen Landesregierung zur Entwicklung wissenschaftlicher-ökonomischer Exzellenzresearc
A Detect and Avoid System in the Context of Multiple-Unmanned Aircraft Systems Operations
NASA's Unmanned Aircraft Systems Integration into the National Airspace System (UAS in the NAS) project examines the technical barriers associated with the operation of UAS in civil airspace. For UAS, the removal of the pilot from onboard the aircraft has eliminated the ability of the ground-based pilot in command (PIC) to use out-the-window visual information to make judgements about a potential threat of a loss of well clear with another aircraft. NASA's Phase 1 research supported the development of a Detect and Avoid (DAA) system that supports the ground-based pilot's ability to detect potential traffic conflicts and determine a resolution maneuver, but existing display/alerting requirements did not account for multiple UAS control (1:N). Demands for increased scalability of UAS in the NAS operations are expected to create a need for simultaneous control of UAs, and thus, a new DAA HMI design will likely be necessary. Previous research, however, has found performance degradations as the number of vehicles under operator control has increased. The purpose of the current human-in-the-loop (HITL) simulation was to examine the viability of 1:N operations with the Phase 1 DAA alerting and guidance. Sixteen UAS pilots flew three scenarios with varying number of UAs under their control (1:1, 1:3, 1:5). In addition to their supervisory and sensor mission responsibilities, pilots were to utilize the DAA system to remain DAA well clear (DWC) during scripted conflicts of mixed severity. Measured response times, separation performance, mission task data, and subjective feedback were collected to assess how the multi-UAS control configuration impacted pilots' ability to maintain DAA well clear and perform the mission tasks. Overall, the DAA system proved surprisingly adaptive to multi-UAS control for preventing losses of DAA well clear (LoDWC). The findings suggest that, while multi-UAS operators are able to maintain safe separation (DWC) from other traffic, their ability to efficiently perform missions drastically decreases with their number of controlled vehicles. Pilot feedback indicated that, for this context, the use of automation support tools for completing and managing mission tasks would be appropriate and desired, especially for ensuring efficient use of assets. Finally, human-machine interface (HMI) design considerations for multi-UAS operations are discussed
Multi-UAS HITL: Primary Results & Automation Workshop Summaries
This presentation covers the primary results from a recently completed human-in-the-loop (HITL) simulation conducted as part of the UAS (Unmanned Aircraft System) integration into the NAS (National Airspace System) project. The HITL examined the impact of multiple (simultaneous) UAS control while performing a demanding mission task and managing scripted conflicts. The scripted conflicts were designed to trigger the detect-and-avoid (DAA) system. This was the first time the DAA system as designed as part of the UAS-NAS project has been applied to multi-UAS control. The second part of the presentation briefly summarizes the takeaways from two workshops held on human-automation interaction considerations for UAS integration. NASA co-hosted and participated in both workshops
Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: Terminal Operations HITL 1B Primary Results
This presentation provides an overview of the primary results from the Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project's second Terminal Operations human-in-the-loop simulation. This talk covers the background of this follow-on experiment, which includes an overview of the first Terminal Operations HITL performed by the project. The primary results include a look at the number and durations of detect and avoid (DAA) alerts issued by the two DAA systems under test. It also includes response time metrics and metrics on the ability of the pilot-in-command (PIC) to maintain sufficient separation. Additional interoperability metrics are included to illustrate how pilots interact with the tower controller. Implications and conclusions are covered at the end
Recovery from Spatial Neglect with Intra- and Transhemispheric Functional Connectivity Changes in Vestibular and Visual Cortex Areas-A Case Study
Objective: Vestibular signals are involved in higher cortical functions like spatial orientation and its disorders. Vestibular dysfunction contributes, for example, to spatial neglect which can be transiently improved by caloric stimulation. The exact roles and mechanisms of the vestibular and visual systems for the recovery of neglect are not yet known. Methods: Resting-state functional connectivity (fc) magnetic resonance imaging was recorded in a patient with hemispatial neglect during the acute phase and after recovery 6 months later following a right middle cerebral artery infarction before and after caloric vestibular stimulation. Seeds in the vestibular [parietal operculum (OP2)], the parietal [posterior parietal cortex (PPC);7A, hIP3], and the visual cortex (VC) were used for the analysis. Results: During the acute stage after caloric stimulation the fc of the right OP2 to the left OP2, the anterior cingulum, and the para/hippocampus was increased bilaterally (i.e., the vestibular network), while the interhemispheric fc was reduced between homologous regions in the VC. After 6 months, similar fc increases in the vestibular network were found without stimulation. In addition, fc increases of the OP2 to the PPC and the VC were seen;interhemispherically this was true for both PPCs and for the right PPC to both VCs. Conclusion: Improvement of neglect after caloric stimulation in the acute phase was associated with increased fc of vestibular cortex areas in both hemispheres to the para-hippocampus and the dorsal anterior cingulum, but simultaneously with reduced interhemispheric VC connectivity. This disclosed a, to some extent, similar but also distinct short-term mechanism (vestibular stimulation) of an improvement of spatial orientation compared to the long-term recovery of neglect
An Exploratory Evaluation of UAS Detect and Avoid Operations in the Terminal Environment
New technical standards for Unmanned Aircraft Systems (UAS) detect and avoid (DAA) systems mark recent progress toward realizing the goal of full integration of UAS into the National Airspace System (NAS). The DAA system is intended to provide a means of compliance with operating regulations that required pilots on board manned aircraft to remain "well clear" of other aircraft which is accomplished through out-the-window visual acquisition of other aircraft and application of a subjective judgment of safe separation. The requirements for the DAA system, including the specification of a DAA well clear threshold as well as functional requirements for detecting, tracking, alerting and guidance processing, and displays, are specified in DO-365, Minimum Operational Performance Standards (MOPS) for DAA Systems developed within RTCA Special Committee 228 (SC-228). Intended as the first in a series of phased versions, these requirements are frequently referred to as the "Phase 1" DAA system. The Phase 1 DAA system is limited for use by aircraft transitioning to and from Class A or special use airspace, through Class D, E, and G airspace. In particular, the Phase 1 DAA MOPS are not intended for terminal airspace operations, a critical gap for enabling a full range of UAS operations. The application of the Phase 1 DAA system and DAA well clear threshold within the terminal area is predicted to result in a high number of unnecessary alerts when the UAS is safely separated from other traffic. The goal of the present study was to examine pilot performance and operational issues related to the operation of the Phase 1 DAA system in a terminal area. This experiment was intended as an exploratory study that would be used to inform the development of a new terminal area-specific DAA well clear definition, and associated alerting and guidance requirements. The two main objectives of this study were to: 1) characterize pilot behavior in the terminal environment with the Phase 1 DAA system, and 2) investigate the effect of modifications to the Phase 1 DAA alerting and guidance structure. In particular, the authors were interested in determining whether the removal of specific alerting and guidance levels, without changing the DAA well clear definition or alerting thresholds, would impact pilot performance while conducting terminal operations. The results indicate that the Phase 1 well clear definition and alerting and guidance resulted in frequent alerting that degraded pilots' ability to discriminate between encounters where another aircraft was safely separated versus when a maneuver was necessary. The resulting impact on pilot performance was slower response times and higher frequency and severity of losses of DAA well clear compared to those observed for experiments examining pilot performance in the en route environment. There was no significant effect of alerting and guidance display configuration on pilot performance
Biogeochemical feedbacks to ocean acidification in a cohesive photosynthetic sediment
Ecosystem feedbacks in response to ocean acidification can amplify or diminish diel pH oscillations in productive coastal waters. Benthic microalgae generate such oscillations in sediment porewater and here we ask how CO₂ enrichment (acidification) of the overlying seawater alters these in the absence and presence of biogenic calcite. We placed a 1-mm layer of ground oyster shells, mimicking the arrival of dead calcifying biota (+Calcite), or sand (Control) onto intact silt sediment cores, and then gradually increased the pCO₂ in the seawater above half of +Calcite and Control cores from 472 to 1216 μatm (pH 8.0 to 7.6, CO₂:HCO₃⁻ from 4.8 to 9.6 × 10⁻⁴). Porewater [O₂] and [H⁺] microprofiles measured 16 d later showed that this enrichment had decreased the O₂ penetration depth (O₂-pd) in +Calcite and Control, indicating a metabolic response. In CO₂-enriched seawater: (1) sediment biogeochemical processes respectively added and removed more H+ to and from the sediment porewater in darkness and light, than in ambient seawater increasing the amplitude of the diel porewater [H⁺] oscillations, and (2) in darkness, calcite dissolution in +Calcite sediment decreased the porewater [H⁺] below that in overlying seawater, reversing the sediment–seawater H⁺ flux and decreasing the amplitude of diel [H⁺] oscillations. This dissolution did not, however, counter the negative effect of CO₂ enrichment on O₂-pd. We now hypothesise that feedback to CO₂ enrichment—an increase in the microbial reoxidation of reduced solutes with O₂—decreased the sediment O₂-pd and contributed to the enhanced porewater acidification
Detailed Differentiation of Calbindin D-28k-Immunoreactive Cells in the Dentate Gyrus in C57BL/6 Mice at Early Postnatal Stages
The hippocampus makes new memories and is involved in mental cognition, and the hippocampal dentate gyrus (DG) is critical because neurogenesis, which occurs throughout life, occurs in the DG. We observed the differentiation of neuroblasts into mature neurons (granule cells) in the DG of C57BL/6 mice at various early postnatal (P) ages: P1, P7, P14, and P21 using doublecortin (DCX) immunohistochemistry (IHC) for neuroblasts and calbindin D-28k (CB) IHC for granule cells. DCX-positive cells decreased in the DG with age; however, CB+ cells increased over time. At P1, DCX and CB double-labeled (DCX+CB+) cells were scattered throughout the DG. At P7, DCX+CB+ cells (about 92% of CB+ cells) were seen only in the granule cell layer (GCL) of the dorsal blade. At P14, DCX+CB+ cells (about 66% of CB+ cells) were found in the lower half of the GCL of both blades. In contrast, at P21, about 18% of CB+ cells were DCX+CB+ cells, and they were mainly located only in the subgranular zone of the DG. These results suggest that the developmental pattern of DCX+CB+ cells changes with time in the early postnatal stages
- …