53 research outputs found

    As Light as You Aspire to Be: Changing body perception with sound to support physical activity

    Get PDF
    Supporting exercise adherence through technology remains an important HCI challenge. Recent works showed that altering walking sounds leads people perceiving themselves as thinner/lighter, happier and walking more dynamically. While this novel approach shows potential for physical activity, it raises critical questions impacting technology design. We ran two studies in the context of exertion (gym-step, stairs-climbing) to investigate how individual factors impact the effect of sound and the duration of the after-effects. The results confirm that the effects of sound in body-perception occur even in physically demanding situations and through ubiquitous wearable devices. We also show that the effect of sound interacted with participants’ body weight and masculinity/femininity aspirations, but not with gender. Additionally, changes in body-perceptions did not hold once the feedback stopped; however, body-feelings or behavioural changes appeared to persist for longer. We discuss the results in terms of malleability of body-perception and highlight opportunities for supporting exercise adherence

    Communication and mutual resource exchange in north Florida hermit crabs

    Full text link
    The patterns of shell exchange in three species of hermit crabs which overlap in distribution and shell use were observed in the laboratory. Crabs showed no tendency to initiate more exchanges with conspecifics as compared with nonconspecific individuals and there were no specific size dominance effects. Lack of common communicatory patterns between Clibararius vittatus and Pagurus pollicaris was correlated with minimal actual exchange, while Pagurus impressus exchanged with both species and executed patterns in common with both. The pattern of shell exchanges and preferences indicated that, in some cases, both individuals may gain in interspecific exchanges.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46904/1/265_2004_Article_BF00569198.pd

    Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum , and Thalassiosira gravida

    Full text link
    Three marine diatoms, Skeletonema costatum, Chaetoceros debilis , and Thalassiosira gravida were grown under no limitation and ammonium or silicate limitation or starvation. Changes in cell morphology were documented with photomicrographs of ammonium and silicate-limited and non-limited cells, and correlated with observed changes in chemical composition. Cultures grown under silicate starvation or limitation showed an increase in particulate carbon, nitrogen and phosporus and chlorophyll a per unit cell volume compared to non-limited cells; particulate silica per cell volume decreased. Si-starved cells were different from Si-limited cells in that the former contained more particulate carbon and silica per cell volume. The most sensitive indicator of silicate limitation or starvation was the ratio C:Si, being 3 to 5 times higher than the values for non-limited cells. The ratios Si:chlorophyll a and S:P were lower and N:Si was higher than non-limited cells by a factor of 2 to 3. The other ratios, C:N, C:P, C:chlorophyll a , N:chlorophyll a , P:chlorophyll a and N:P were considered not to be sensitive indicators of silicate limitation or starvation. Chlorophyll a , and particulate nitrogen per unit cell volume decreased under ammonium limitation and starvation. NH 4 -starved cells contained more chlorophyll a , carbon, nitrogen, silica, and phosphorus per cell volume than NH 4 -limited cells. N:Si was the most sensitive ratio to ammonium limitation or starvation, being 2 to 3 times lower than non-limited cells. Si:chlorophyll a , P:chlorophyll a and N:P were less sensitive, while the ratios C:N, C:chlorophyll a , N:chlorophyll a , C:Si, C:P and Si:P were the least sensitive. Limited cells had less of the limiting nutrient per unit cell volume than starved cells and more of the non-limiting nutrients (i.e., silica and phosphorus for NH 4 -limited cells). This suggests that nutrient-limited cells rather than nutrient-starved cells should be used along with non-limited cells to measure the full range of potential change in cellular chemical composition for one species under nutrient limitation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46631/1/227_2004_Article_BF00392568.pd
    corecore