9 research outputs found
Pseudomonas aeruginosa Biofilm Formation and Its Resistance to Beta-Lactam Antibiotics
Pseudomonas aeruginosa is an aerobic Gram-negative bacterium and a human opportunistic pathogen that causes acute and chronic infections in humans. Pseudomonas aeruginosa possesses a strong resistance structure by attaching to suitable surfaces and forming a biofilm matrix. This bacterial biofilm may cause higher natural antibiotic resistance due to biofilm resistance mechanisms. The biofilm structure consists of an exopolysaccharide matrix that is very difficult for antibiotics to penetrate. . Components of the exopolysaccharide matrix as the biofilm coating consist of PsI, Pel, alginate and eDNA. Pseudomonas aeruginosa is known to produce these three exopolysaccharides. Components of Psl and Pel are involved in biofilm maturation and antibiotic resistance, and alginate is involved in mucus production. system. Pseudomonas aeruginosa is known to involve mechanisms of resistance to beta-lactam antibiotics due to the relationship between biofilm formation and antibiotic resistance. On this basis, the relationship between the biofilm formation of Pseudomonas aeruginosa bacteria and resistance to beta-lactam antibiotics should be further understood. In this article, we use literature methods from various literature on biofilm formation of P. aeruginosa and its resistance to beta-lactam antibiotics, including research papers and studies. There are no restrictions on the types and locations of studies included in this article. Pseudomonas aeruginosa is an opportunistic pathogen capable of generating biofilms. The P. aeruginosa biofilm structure surrounds the bacterium and consists of an exopolysaccharide matrix composed of PsI, Pel, alginate, and eDNA. We hope that this article has provided information on biofilm relationships. Pseudomonas aeruginosapossesses antibiotic resistance mechanisms, namely intrinsic resistance and adaptive resistance. Antimicrobial resistance involves decreased membrane permeability, synthesis of antibiotic-ineffective enzymes, chromosomal mutations, and horizontal gene transfer from other bacteria. Pseudomonas aeruginosa is known to develop mechanisms of resistance to beta-lactam antibiotics. In addition, biofilm formation may also lead to phenotypic changes in the resistance traits of Pseudomonas aeruginosa. We hope this article will provide useful information for developing research on the medication and treatment of people infected with Pseudomonas aeruginosa.
Pseudomonas aeruginosa adalah bakteri gram negatif aerobik, patogen manusia oportunistik yang menyebabkan infeksi akut dan kronis pada manusia. Pseudomonas aeruginosa memiliki struktur resistensi yang kuat dengan menempel pada permukaan yangsesuai dan membentuk matriks biofilm. Biofilm bakteri ini dapat menyebabkan resistensi alami yang lebih tinggi terhadap antibiotik karena mekanisme toleransi yang dibuat oleh biofilm. Struktur biofilm terdiri dari matriks eksopolisakarida yang sangat sulit ditembus oleh antibiotik. Komponen matriks eksopolisakarida dari biofilm meliputi PsI, Pel, alginat dan eDNA. Diketahui bahwa Pseudomonas aeruginosa dapat menghasilkan ketiga jenis eksopolisakarida dimana komponen Psl dan Pel berperan dalam proses pematangan biofilm dan resistensi antibiotik, sedangkan alginat berperan dalam pembentukan mukus pelindung resistensi antibiotik Pseudomonas aeruginosa dan sistem kekebalan tubuh. Pseudomonas aeruginosa dapat mengembangkan mekanisme resistensi terhadap antibiotik beta-laktam karena adanya hubungan antara pembentukan biofilm dan resistensi antibiotik. Berdasarkan hal tersebut, diperlukan informasi lebih lanjut mengenai hubungan pembentukan biofilm bakteri P. aeruginosa dengan resistensinya terhadap antibiotik beta-laktam. Artikel ini menggunakan metode tinjauan Pustaka dari berbagai literatur mengenai pembentukan biofilm bakteri P. aeruginosa dan sifat resistensinya terhadap antibiotik beta-laktam, seperti artikel penelitian dan studi yang bersangkutan. Tidak ada pembatasan jenis dan lokasi studi referensi artikel ini. Pseudomonas aeruginosa merupakan bakteri patogen oportunistik yang dapat menghasilkan biofilm. Struktur biofilm dari Pseudomonas aeruginosa meliputi matriks eksopolisakarida yang membungkus bakteri dan tersusun dari Psl, Pel, alginat dan eDNA.Artikel ini diharapkan dapat memberikan informasi terkait hubungan biofilm. Bakteri P. aeruginosa memiliki mekanisme resistensi antibiotik yaitu resistensi intrinsik dan resistensi adaptif. Resistensi antibiotik ini meliputi penurunan permeabilitas membran, sintesis enzim yang dapat menonaktifkan antibiotik, mutasi melalui kromosom dan transfer gen horizontal dari bakteri lainnya. P. aeruginosa diketahui dapat mengembangkan mekanisme resistensi terhadap antibiotik beta-laktam. Selain itu pembentukan biofilm juga dapat menyebabkan sifat resistensi bakteri P. aeruginosa berubah secara fenotipik. Artikel ini diharapkan dapat menambah informasi untuk perkembangan penelitian terhadap penanganan dan terapi obat pada individu yang terinfeksi P. aeruginosa
INHIBITION OF METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS (MRSA) BIOFILM: THE ESSENTIAL ROLE AND POTENTIAL USAGE OF BACTERIOCINS
Background: The potential of Methicillin-Resistant Staphylococcus aureus (MRSA) to develop biofilms and its resistance to antibiotics become major worldwide issue. Complementary anti-microbial strategies have been used recently, in particular for the treatment of MRSA biofilm-associated resistance. Purpose: To review the potential, essential role, and mechanism of bacteriocin that can inhibit MRSA biofilms. The review was conducted by searching and analyzing published articles from Elsevier, ProQuest and PubMed database. Review: Globally, the incidence of MRSA in 85 countries based on WHO surveillance reaches more than 20%. Biofilm, as one of the virulence factors of MRSA, can result in the failure of antibiotic therapy. According to reports, bacteriocins, such as peptides synthesized by Gram-negative and Gram-positive bacteria, have antimicrobial activity that has the potential to inhibit antibiotic-resistant pathogens and biofilms formed by MRSA. Result: The bacteriostatic and bactericidal activity of bacteriocins against MRSA has been shown through research across several countries on the usage of bacteriocins, which was isolated from different types of bacteria against MRSA biofilms. Bacteriocins contribute to the inhibition of MRSA biofilms by inhibiting the synthesis of cell walls, leading to pores in the cytoplasmic membranes of bacterial cells, interrupting the synthesis of extracellular membranes, disrupting cell membranes, and reducing the number of planktonic cells within MRSA biofilms. Conclusion: Bacteriocins have an effective mechanism for treating MRSA biofilms with low toxicity and risk of resistance, hence they are safe to be developed as complementary components to antibiotics in an effort to treat MRSA biofilms
Diagnosis, patogenesitas dan pemeriksaan Campylobacter jejuni
Campylobacterosis is an infection disease caused by bacteria from Campylobacter genus, especially Campylobacter jejuni (C. jejuni) species. This Gram-negative bacteria has very mall size, rod-shaped, thin and some are spiral shaped. C. jejuni does not have spore, catalase positive, nitrat reductor, and highly motile with flagella located at one or two ends of its body. It’s growth is microaerophilic, grow optimally with low oxygen levels. In the growth media, all Campylobacter sp grew well at pH 5.5-8.0. Colonies appear round, smooth and convex. Campylobacteriosis is zoonotic, which mean it can be transmitted from animals to humans. Bacteria that enter the human body produce a toxin, Cytolethal Distending Toxin (CDT), which is one of the pathogenic factors. Clinical manifestations caused diarrhea, sometimes to bloody, abdominal pain, fever, nausea and vomiting. In humans and animals, most cases are asymptomatic. Laboratory tests to support a definite diagnosis of infection by Campylobacteriosis are necessary. Based on this, the purpose of writing this article is to link the diagnosis and pathogenesis of Campylobacteriosis with microbiological examination. Microbiological examinations that can be done are microscopic, culture and non-culture. Currently, non-culture techniques being developed include Polymerase Chain Reaction (PCR), Epidemiological typing system and serology.Campylobacteriosis merupakan penyakit infeksi yang disebabkan oleh bakteri bergenus Campylobacter, terutama spesies Campylobacter jejuni (C. jejuni). Bakteri ini bersifat Gram negatif, berukuran sangat kecil, berbentuk batang bergelombang, tipis, beberapa berbentuk spiral. C. jejuni tidak membentuk spora, katalase positif, dapat mereduksi nitrat dan sangat motil dengan flagel yang terdapat pada satu atau dua ujung tubuhnya. Pertumbuhannya bersifat mikroaerofilik, dapat tumbuh optimal dengan kadar oksigen rendah. Pada media pertumbuhan, semua Campylobacter sp tumbuh dengan baik pada pH 5,5-8,0. Koloni tampak bulat, halus dan cembung. Campylobacteriosis bersifat zoonosis yaitu dapat menular dari hewan ke manusia. Bakteri yang masuk ke dalam tubuh manusia memproduksi toksin, Cytolethal Distending Toxin (CDT) yang merupakan salah satu faktor patogenitas. Manifestasi klinik yang ditimbulkan berupa diare, kadang-kadang sampai berdarah, sakit pada bagian perut, demam, mual dan muntah. Pada manusia dan hewan banyak kasus tidak menunjukkan gejala. Pemeriksaan laboratorium untuk menunjang diagnosis pasti infeksi oleh Campylobacteriosis sangat diperlukan. Berdasarkan hal tersebut, tujuan penulisan artikel ini adalah mengaitkan diagnosis dan patogenesis Campylobacteriosis dengan pemeriksaan mikrobiologi. Pemeriksaan mikrobiologi yang dapat dilakukan adalah mikroskopis, kultur dan non kultur. Saat ini teknik non kultur yang dikembangkan antara lain, Polymerase Chain Reaction (PCR), Epidemiological typing system dan serologi
Detection of Opportunistic Fungus Pneumocystis jirovecii Major Surface Glycoprotein (MSG) gene in HIV-AIDS Patients with Pneumoniae in Jakarta
Pneumocystis jirovecii is known to cause opportunistic infections in the lower respiratory tract in individuals with low immune systems, especially patient with HIV infection. The prevalence of P. jirovecii pneumonia (PjP) in various countries show varying numbers. In Indonesia, HIV cases continue to rise. However, the data in Indonesia concerning the case of PjP is very limited. Until now the prevalence of PjP in Indonesia is only based on clinical symptoms of the patient. Currently, diagnosis of PjP relies on microscopic examination. The disadvantage of this examination is not easy to do and has a high negative predictive value. Thus, this study was conducted to develop a molecular test to diagnose PjP infection in HIV-AIDS suspected pneumonia. Molecular diagnostic test aimed for Major Surface Glycoprotein (MSG) gene of P. jirovecii detection was done through real-time PCR against 100 sputum samples. Demographic data show that the prevalence of PjP infection in HIV-AIDS suspected pneumonia patients in Jakarta is 20.0%, male 75% within 31-40 y.o (35%), dominant (80%) from patients with CD4+ T-lymphocytes of 200-349 cells/µL. Molecular real-time PCR methods were shown to give five times sensitivity higher than Giemsa stain.
Keywords: P. jirovecii, HIV, real-time PC
Patogenesis dan virulensi Burkholderia pseudomallei penyebab melioidosis dan Burkholderia cepacia sebagai patogen oportunis
Di antara genus Burkholderia terdapat dua spesies yang menjadi perhatian dalam bidang kesehatan, yaitu B. pseudomallei dan B. cepacia. Kedua bakteri ini menyebabkan masalah klinis yang berbeda. Penyakit melioidosis kerap disebabkan oleh B.pseudomallei, sedangkan B. cepacia complex (Bcc) seringkali ditemukan pada pasien cystic fibrosis (CF). Burkholderia pseudomallei merupakan kelompok bakteri patogen intracellular Gram negatif, memiliki bentuk seperti peniti. Demikian pula B. cepacia merupakan kelompok bakteri Gram negatif basil serta mempunyai flagel polar multitrik. B. pseudomallei memiliki kemampuan untuk menginfeksi berbagai jenis sel dan menghindari respon imun manusia. Bakteri ini masuk melalui kulit atau selaput lendir dan bereplikasi di sel epitel. Di dalam sel inang, bakteri bergerak dengan menginduksi polimerisasi aktin inang, mendesak dinding membran membentuk tonjolan yang meluas ke sel lain. Tonjolan ini menyebabkan sel tersebut bergabung, membentuk sel raksasa berinti (multinucleated giant cell/MNGC). Setelah memasuki saluran pernafasan pasien penderita CF, B. cepacia menempel pada permukaan sel mukosa ataupun sel epitel inang. Lapisan mukus yang menebal pada paru mendukung efikasi antimikrobia dan meningkatkan respon inflamasi. Kemampuan untuk melewati barier epitelial dan menemukan akses ke aliran darah hanya dimiliki oleh strain kelompok ini. Faktor virulensi bertugas membantu proses invasi sel inang oleh bakteri patogen. Secara umum, kedua spesies ini memiliki jenis faktor virulensi yang sama, diantaranya adalah intracellular survival, quorum sensing, adherence factor, sistem sekresi, lipopolisakarida (LPS) dan eksopolisakarida (EPS), biofilm, toksin dan resistensi antimikrobia.Diantara genus Burkholderia terdapat dua spesies yang menjadi perhatian dalam bidang kesehatan, yaitu B. pseudomallei dan B. cepacia. Kedua bakteri ini menyebabkan masalah klinis yang berbeda. Penyakit melioidosis kerap disebabkan oleh B.pseudomallei, sedangkan B. cepacia complex (Bcc) seringkali ditemukan pada pasien cystic fibrosis (CF). Burkholderia pseudomallei merupakan kelompok bakteri patogen intracellular Gram negatif, memiliki bentuk seperti peniti. Demikian pula B. cepacia merupakan kelompok bakteri Gram negatif basil, tidak dapat membentuk spora, bersifat aerobik, katalase dan oksidase positif, serta mempunyai flagel polar multitrik. Meskipun jalur patogenesis kedua bakteri ini sedikit berbeda, faktor virulensi yang dimiliki oleh kedua spesies ini hampir sama. B. pseudomallei memiliki kemampuan untuk menginfeksi berbagai jenis sel dan menghindari respon imun manusia. Bakteri ini masuk melalui kulit atau selaput lendir dan bereplikasi di sel epitel. Di dalam sel inang, bakteri bergerak dengan menginduksi polimerisasi aktin inang, mendesak dinding membran membentuk tonjolan yang meluas ke sel lain. Tonjolan ini menyebabkan sel tersebut bergabung, membentuk sel raksasa berinti (multinucleated giant cell /MNGC). MNGC akan membentuk plak sebagai tempat bagi bakteri untuk bereplikasi. Setelah memasuki saluran pernafasan pasien penderita CF, B. cepacia menempel pada permukaan sel mukosa ataupun sel epitel inang. Lapisan mukus yang menebal pada paru mendukung efikasi antimikrobia dan meningkatkan respon inflamasi. Kemampuan untuk melewati barier epitelial dan menemukan akses ke aliran darah hanya dimiliki oleh strain kelompok ini karena patogen lain yang ditemukan pada pasien CF tidak menyebabkan bakteremia. Faktor virulensi bertugas membantu proses invasi sel inang oleh bakteri patogen. Secara umum, kedua spesies ini memiliki jenis faktor virulensi yang sama, diantaranya adalah intracellular survival, quorum sensing, adherence factor, sistem sekresi, LPS dan EPS, biofilm, toksin dan resistensi antimikrobia
Kultivasi dan Identifikasi Bakteri Anaerob Bacteroides Fragilis
ABSTRACT Anaerobic infections are infections caused by bacteria that grow and develop without the need for oxygen. Anaerobic bacteria are found in various human bodies such as on the skin, mucosal surfaces, and are in high concentrations in the mouth and digestive tract as part of the normal flora. These bacteria can infect deep wound, deeper tissues, and internal organs thet require ilttle oxygen. Cultivation and identification of anaerobic bacteria is one the most important steps as the basis diagnosis of a disease. Cultivation can be done by choosing the right medium, while to get a growth environtment without oxygen, an anerobic jar equipped with an anaerogen chemical gas generation sachet is used. The process of identifying bacteria was carried out starting from Gram staining follwed by a carbohydrate utilitization examination. Technological developments support the development of various automatic methods to identify anaerobic bacteria, one of which is the Vitek-2 machine. Bacteroides fragilis from clinical specimens was successfully identified with a probability of >90%, Gram negative, rod-shaped anaerobic bacterium. Keywords: Cultivation, Identification, Anaerobic Bacteria ABSTRAK Infeksi anaerob adalah infeksi yang disebabkan oleh bakteri yang tumbuh dan berkembang tanpa membutuhkan oksigen. Bakteri anaerob ditemukan pada berbagai tubuh manusia seperti di kulit, permukaan mukosa, dan berada dalam konsentrasi tinggi di mulut dan saluran pencernaan sebagai bagian dari flora normal. Bakteri ini dapat menginfeksi luka yang dalam, jaringan yang lebih dalam, dan organ dalam yang membutuhkan sedikit oksigen. Kultivasi dan proses identifikasi bakteri anaerob menjadi salah satu tahapan yang sangat penting sebagai dasar diagnosis terhadap suatu penyakit. Kultivasi dapat dilakukan dengan pemilihan medium yang tepat sedangkan untuk mendapatkan lingkungan pertumbuhan tanpa oksigen digunakan jar anaerob yang dilengkapi dengan gas generation sachet anaerogen chemical. Proses identifikasi bakteri dilakukan mulai dari pewarnaan Gram dilanjutkan dengan uji pemanfaatan karbohidrat. Perkembangan teknologi menunjang berkembangnya berbagai metode otomatis untuk melakukan identifikasi bakteri anaerob, salah satunya adalah mesin Vitek-2. Bacteroides fragilis dari spesimen klinik berhasil diidentifikasi dengan probabilitas >90%, merupakan bakteri anaerob berbentuk batang bersifat Gram negatif. Kata Kunci: Kultivasi, Identifikasi, Bakteri Anaero
The Urgency of Identification of Extended Spectrum Beta-Lactamase (ESBL) Produced Bacteria in Indonesia
The Extended Spectrum Beta-Lactamase (ESBL) produced bacterias are the bacteria group that have resistant characteristic to beta-lactam antibiotics because of their ability to hydrolyze these antibiotics. This is a global health issue because they can reduce the treatment effectiveness and endanger human health. The ESBL produced bacterias were reported that they can be isolated from samples originated from animals, humans, and environment, indicating the potency of the resistant genes spreading widely. Therefore, it is necessary to take the preventive and control measures across sectors and stakeholders to limit the widespread transmission of resistant genes carried-bacteria, so the ESBL produced bacteria prevalence can be monitored. This article aims to present the studies of ESBL produced bacteria in Indonesia and the comparison with another country based on published journals and data. Even though these bacterias were identified in various samples, the reports from animals (wild and domestic) and the environment are still available in small numbers in Indonesia. The comprehensive studies from various fields (one health spectrum) in detection and surveillance are needed to support the awareness of antimicrobial resistance. Surveillance can be conducted thorough microbial approach such as culture and identification, and molecular methods. The surveillance data can be used as the source for planning and controlling program of antimicrobial resistance especially ESBL produced bacterias in Indonesia
The qPCR Assay for Detecting The Presence and Relative Abundance of Pseudomonas aerugionosa and Antibiotic Resistance Gene aadA2 in Hospital Wastewater of National Reference Hospital Dr. Cipto Mangunkusumo (RSCM)
Antimicrobial resistance is one of the top 10 global health threats. The hospital wastewater (HWW) potentially becomes the reservoir and dissemination of antibiotic resistance gene (ARG) and bacterial pathogens. In Indonesia, the protocol to monitor the ARGs form HWW has not been established. This study aimed to detect the presence and find the relative abundance of P. aeruginosa and aadA2 genes from Dr. RSUPN. Cipto Mangungkusumo (RSCM) inlet and outlet wastewater through qPCR assay. The primers used were supported by Resistomap. The study revealed that the qPCR assay was able to detect the Ct value of P. aeruginosa and aadA2. The aadA2 gene was found in all waste water samples, meanwhile P. aeruginosa was only found in some of inlet samples. aadA2 had the highest relative abundance and this gene’s mobility uses plasmids and integrons that potentially enhance the acquired antimicrobial resistance (AMR) mechanism. This study implicated that qPCR assay was capable to detect pathogenic bacteria and ARG, and ARG could be released to the environment even though the wastewater samples have been proceeded in wastewater treatment plants (WWTP). The qPCR assay can be used as the method to monitor the AMR status in a hospital and the spreading potency to the environment using the HWW
Indonesian Mangrove Sonneratia caseolaris leaves ethanol extract is a potential super antioxidant and anti Methicillin-resistant Staphylococcus aureus drug
Methicillin-resistant Staphylococcus aureus (MRSA) is an S. aureus strain that has developed resistance against ß-lactam antibiotics, resulting in a scarcity of a potent cure for treating Staphylococcus infections. In this study, the anti-MRSA and antioxidant activity of the Indonesian mangrove species Sonneratia caseolaris, Avicennia marina, Rhizophora mucronata, and Rhizophora apiculata were studied. Disk diffusion, DPPH, a brine shrimp lethality test, and total phenolic and flavonoid assays were conducted. Results showed that among the tested mangroves, ethanol solvent-based S. caseolaris leaves extract had the highest antioxidant and anti-MRSA activities. An antioxidant activity assay showed comparable activity when compared to ascorbic acid, with an IC50 value of 4.2499 ± 3.0506 ppm and 5.2456 ± 0.5937 ppm, respectively, classifying the extract as a super-antioxidant. Moreover, S. caseolaris leaves extract showed the highest content of strongly associated antioxidative and antibacterial polyphenols, with 12.4% consisting of nontoxic flavonoids with the minimum inhibitory concentration of the ethanol-based S. caseolaris leaves extract being approximately 5000 ppm. LC-MS/MS results showed that phenolic compounds such as azelaic acid and aspirin were found, as well as flavonoid glucosides such as isovitexin and quercitrin. This strongly suggested that these compounds greatly contributed to antibacterial and antioxidant activity. Further research is needed to elucidate the interaction of the main compounds in S. caseolaris leaves extract in order to confirm their potential either as single or two or more compounds that synergistically function as a nontoxic antioxidant and antibacterial against MRSA