1,019 research outputs found
Geodynamics of very high speed transport systems
This work reveals the existence of a new dynamic load amplification mechanism due to ground surface loads. It is caused by the interaction between a moving vehicle's axle configuration and the vibration characteristics of the underlying soil-guideway system. It is more dominant than the traditionally considered ‘critical velocity’ dynamic amplification mechanism of the guideway-ground structure, and is of relevance to very high speed transport systems such as high speed rail. To demonstrate the new amplification mechanism, first a numerical model is developed, capable of simulating ground-wave propagation in the presence of a series of discrete high speed loads moving on a soil-guideway system. The model couples analytical equations for the transportation system guideway with the thin-layer element method for ground simulation. As a practical example, it is validated using high speed railroad field data and then used to analyse the response of a generalised single moving load at high speed. Next the effect of multiple discrete vehicle-guideway contact points is studied and it is shown that dynamic amplification is highly sensitive to load spacing when the speed is greater than the critical velocity. In particular, large resonant effects occur when the axle/magnet loading frequency and the propagating wave vibration frequency of the soil-guideway structure are equivalent. As an example, it is shown that for an individual case, although critical velocity might increase displacements by 50–100%, for the same scenario, axle configuration can increase displacements by 400%. It is also shown that resonance is sensitive to the total number of loading points and the individual frequencies excited by various spacings. The findings are important for current (e.g. high speed railway) and potential future (e.g. hyperloop) transport systems required to operate at speeds either close-to, or greater than the critical velocity of their supporting guideway-soil structure. In such situations, it is important to design the vehicle and supporting structure(s) as a combined system, rather than in isolation
Railway critical speed assessment: A simple experimental-analytical approach
When constructing a new railway line, its long length means there are significant financial implications associated with determining the geodynamic ground properties. Therefore, this paper presents recommendations to optimize the efficiency and depth of such a geotechnical site investigation. Firstly, a numerical analysis is performed to investigate the effect of soil layering, soil stiffness and track bending stiffness on critical velocity. It is shown that each of these variables play an important role, however for most practical cases, only the top 8 m of soil is influential. Track dynamics are rarely affected by soil properties at depths below this, meaning this is the maximum required depth of soil investigation. Using this knowledge, a hybrid experimental-analytical methodology is presented, based on a geophysical Spectral Analysis of Surface Waves (SASW) experimental setup to compute the ground dispersion curve and an analytical model to compute the track dispersion curve. The experimental and analytical results are combined directly, to accurately compute the critical velocity. This approach is attractive because: 1) SASW tests are typically accurate to ≈8 m (when using a mobile exciter) thus matching the required depth needed for critical velocity computation, 2) soil property uncertainties are inherently accounted for, 3) the uncertainties associated with SASW inversion are avoided. The approach is attractive when constructing new railway lines and upgrading the speed of existing lines because it can potentially yield site investigation cost savings. In-situ field work is performed to show the practical application of the technique
Non-linear soil behavior on freight vs passenger lines
Upgrading existing passenger-only railway lines to carry freight traffic is becoming increasingly desirable. This is challenging because freight trains have larger axle loads and thus can have a negative effect on track longevity, particularly on ballasted lines supported by sub-optimal ground conditions. These additional loads can cause large subgrade strains resulting in non-linear behaviour, which should be considered before permitting freight vehicles on passenger routes. To do so requires the modelling of non-linear soil behaviour which is challenging. Therefore, this paper presents a solution in the form of an equivalent non-linear, thin layer element soil model, coupled to an analytical track model. The model has low computational demand and can adjust subgrade stiffness depending upon strain levels. Therefore, it is well suited to computing track response induced by freight trains. This paper validates the model and then uses it to compare the differences between the response of a ballasted line to freight and passenger vehicles
Isolated Idiopathic Aortitis with an Unusually Thickened Aortic Wall: Case Report
Aortitis includes a broad range of disorders involving inflammation of the aorta. While most forms of aortitis can be linked to a specific cause, patients with idiopathic aortitis (IDA), are asymptomatic and usually diagnosed after surgical removal. The specific pathophysiology is not well understood, but can be strongly associated with tobacco smoking, young age at presentation, and family history of aortic aneurysm. Wall thickening is the most common physical characteristic of aortitis, and the inflammation can affect any layer of the aorta. The normal wall thickness of the aorta is less than 4 mm and can be as thick as 9 mm. Few studies document a correlation between wall thickness and the severity of aortitis. This paper presents a unique case of severe aortic aneurysm associated with an abnormal thickening of the ascending aorta
Feasibility of TEE-guided stroke risk assessment in atrial fibrillation—background, aims, design and baseline data of the TIARA pilot study
Contains fulltext :
97916.pdf (publisher's version ) (Open Access)BACKGROUND: Antithrombotic management in atrial fibrillation (AF) is currently based on clinical characteristics, despite evidence of potential fine-tuning with transoesophageal echocardiography (TEE). This open, randomised, multicentre study addresses the hypothesis that a comprehensive strategy of TEE-based aspirin treatment in AF patients is feasible and safe. METHODS: Between 2005 and 2009, ten large hospitals in the Netherlands enrolled AF patients with a moderate risk of stroke. Patients without thrombogenic TEE characteristics were randomised to aspirin or vitamin K antagonists (VKA). The primary objective is to show that TEE-based aspirin treatment is safe compared with VKA therapy. The secondary objective tests feasibility of TEE as a tool to detect echocardiographic features of high stroke risk. This report compares randomised to non-randomised patients and describes the feasibility of a TEE-based approach. RESULTS: In total, 310 patients were included. Sixty-nine patients were not randomised because of non-visualisation (n = 6) or TEE risk factors (n = 63). Compared with non-randomised patients, randomised patients (n = 241) were younger (65 +/- 11 vs. 69 +/- 9 years, p = 0.004), had less coronary artery disease (9 vs. 20%, p = 0.018), previous TIA (1.7 vs. 7.2%, p = 0.029), AF during TEE (25 vs. 54%, p < 0.001), mitral incompetence (55 vs. 70%, p = 0.038), VKA use (69 vs. 82%, p = 0.032), had a lower mean CHADS(2) score (1.2 +/- 0.6 vs. 1.6 +/- 1.0, p = 0.004), and left ventricular ejection fraction (59 +/- 8 vs. 56 +/- 8%, p = 0.016). CONCLUSIONS: This study shows that a TEE-based approach for fine-tuning stroke risk in AF patients with a moderate risk for stroke is feasible. Follow-up data will address the safety of this TEE-based approach
High-dose intravenous iron reduces myocardial infarction in patients on haemodialysis
AIMS: To investigate the effect of high-dose iron vs. low-dose intravenous (IV) iron on myocardial infarction (MI) in patients on maintenance haemodialysis. METHODS AND RESULTS: This was a pre-specified analysis of secondary endpoints of the Proactive IV Iron Therapy in Hemodialysis Patients trial (PIVOTAL) randomized, controlled clinical trial. Adults who had started haemodialysis within the previous year, who had a ferritin concentration <400 μg per litre and a transferrin saturation <30% were randomized to high-dose or low-dose IV iron. The main outcome measure for this analysis was fatal or non-fatal MI. Over a median of 2.1 years of follow-up, 8.4% experienced a MI. Rates of type 1 MIs (3.2/100 patient-years) were 2.5 times higher than type 2 MIs (1.3/100 patient-years). Non-ST-elevation MIs (3.3/100 patient-years) were 6 times more common than ST-elevation MIs (0.5/100 patient-years). Mortality was high after non-fatal MI (1- and 2-year mortality of 40% and 60%, respectively). In time-to-first event analyses, proactive high-dose IV iron reduced the composite endpoint of non-fatal and fatal MI [hazard ratio (HR) 0.69, 95% confidence interval (CI) 0.52-0.93, P = 0.01] and non-fatal MI (HR 0.69, 95% CI 0.51-0.93; P = 0.01) when compared with reactive low-dose IV iron. There was less effect of high-dose IV iron on recurrent MI events than on the time-to-first event analysis. CONCLUSION: In total, 8.4% of patients on maintenance haemodialysis had an MI over 2 years. High-dose compared to low-dose IV iron reduced MI in patients receiving haemodialysis. EUDRACT REGISTRATION NUMBER: 2013-002267-25
Heart Failure Hospitalization in Adults Receiving Hemodialysis and the Effect of Intravenous Iron Therapy
OBJECTIVES: This study sought to examine the effect of intravenous iron on heart failure events in hemodialysis patients. BACKGROUND: Heart failure is a common and deadly complication in patients receiving hemodialysis and is difficult to diagnose and treat. METHODS: The study analyzed heart failure events in the PIVOTAL (Proactive IV Iron Therapy in Hemodialysis Patients) trial, which compared intravenous iron administered proactively in a high-dose regimen with a low-dose regimen administered reactively. Heart failure hospitalization was an adjudicated outcome, a component of the primary composite outcome, and a prespecified secondary endpoint in the trial. RESULTS: Overall, 2,141 participants were followed for a median of 2.1 years. A first fatal or nonfatal heart failure event occurred in 51 (4.7%) of 1,093 patients in the high-dose iron group and in 70 (6.7%) of 1,048 patients in the low-dose group (HR: 0.66; 95% CI: 0.46-0.94; P = 0.023). There was a total of 63 heart failure events (including first and recurrent events) in the high-dose iron group and 98 in the low-dose group, giving a rate ratio of 0.59 (95% CI: 0.40-0.87; P = 0.0084). Most patients presented with pulmonary edema and were mainly treated by mechanical removal of fluid. History of heart failure and diabetes were independent predictors of a heart failure event. CONCLUSIONS: Compared with a lower-dose regimen, high-dose intravenous iron decreased the occurrence of first and recurrent heart failure events in patients undergoing hemodialysis, with large relative and absolute risk reductions. (UK Multicentre Open-label Randomised Controlled Trial Of IV Iron Therapy In Incident Haemodialysis Patients; 2013-002267-25)
Subtidal macrozoobenthos communities from northern Chile during and post El Niño 1997–1998
Despite a large amount of climatic and oceanographic information dealing with the recurring climate phenomenon El Niño (EN) and its well known impact on diversity of marine benthic communities, most published data are rather descriptive and consequently our understanding of the underlying mechanisms and processes that drive community structure during EN are still very scarce. In this study, we address two questions on the effects of EN on macrozoobenthic communities: (1) how does EN affect species diversity of the communities in northern Chile? and (2) is EN a phenomenon that restarts community assembling processes by affecting species interactions in northern Chile? To answer these questions, we compared species diversity and co-occurrence patterns of soft-bottoms macrozoobenthos communities from the continental shelf off northern Chile during (March 1998) and after (September 1998) the strong EN event 1997–1998. The methods used varied from species diversity and species co-occurrence analyses to multivariate ordination methods.
Our results indicate that EN positively affects diversity of macrozoobenthos communities in the study area, increasing the species richness and diversity and decreasing the species dominance. EN represents a strong disturbance that affects species interactions that rule the species assembling processes in shallow-water, sea-bottom environments
Etiology of Severe Non-malaria Febrile Illness in Northern Tanzania: A Prospective Cohort Study.
The syndrome of fever is a commonly presenting complaint among persons seeking healthcare in low-resource areas, yet the public health community has not approached fever in a comprehensive manner. In many areas, malaria is over-diagnosed, and patients without malaria have poor outcomes. We prospectively studied a cohort of 870 pediatric and adult febrile admissions to two hospitals in northern Tanzania over the period of one year using conventional standard diagnostic tests to establish fever etiology. Malaria was the clinical diagnosis for 528 (60.7%), but was the actual cause of fever in only 14 (1.6%). By contrast, bacterial, mycobacterial, and fungal bloodstream infections accounted for 85 (9.8%), 14 (1.6%), and 25 (2.9%) febrile admissions, respectively. Acute bacterial zoonoses were identified among 118 (26.2%) of febrile admissions; 16 (13.6%) had brucellosis, 40 (33.9%) leptospirosis, 24 (20.3%) had Q fever, 36 (30.5%) had spotted fever group rickettsioses, and 2 (1.8%) had typhus group rickettsioses. In addition, 55 (7.9%) participants had a confirmed acute arbovirus infection, all due to chikungunya. No patient had a bacterial zoonosis or an arbovirus infection included in the admission differential diagnosis. Malaria was uncommon and over-diagnosed, whereas invasive infections were underappreciated. Bacterial zoonoses and arbovirus infections were highly prevalent yet overlooked. An integrated approach to the syndrome of fever in resource-limited areas is needed to improve patient outcomes and to rationally target disease control efforts
- …