234 research outputs found

    Effects of rundown in soil hydraulic condition on crop productivity in south-eastern Queensland - a simulation study

    Get PDF
    Declining soil organic matter levels because of cropping have been shown to reduce crop growth and yield, but the effects of changing infiltration and soil hydraulic properties on crop productivity have not been widely evaluated. Cropping systems in south-eastern Queensland have, in the past, involved intense tillage, trafficking with heavy machinery, and changed organic matter cycling, affecting soil aggregation, permeability, water-holding characteristics, and organic matter. The aim of this paper is to determine how important infiltration and soil hydraulic condition has been to the water balance, crop growth, and yield in the past, and may be in the future if management is not changed. Change in physical and chemical condition of the 5 most commonly cropped soils in south-east Queensland (Sodosols, Vertosols with ≤55% clay, Vertosols with >55% clay, Red Ferrosols and Red Chromosols/Kandosols) was measured over 0–70 years of cropping and estimated up to 200 years. The APSIM model was used to predict effects of changing soil condition in a rain-fed, fertilised, wheat-summer fallow cropping system with intense tillage. Decline in infiltration, restricted internal redistribution of water, and increased evaporation reduced water supply to the crop, causing simulated yield to decline by 29, 38, 25, 17, and 13% for the 5 soils, respectively, after 50 years of cropping. Gross margin declined at a faster rate, falling by 36, 50, 40, 20, and 21%, respectively after 50 years because of increasing fertiliser requirement to compensate for declining soil fertility. Crop productivity on most soils continued to steadily decline as period of cropping increased to 200 years. To arrest or reverse this downward trend, it is likely that substantial changes to current cropping systems will be needed, including reducing tillage and trafficking, and improving organic matter levels

    Simulating infiltration and the water balance in cropping systems with APSIM-SWIM

    Get PDF
    We test APSIM-SWIM's ability to simulate infiltration and interactions between the soil water balance and grain crop growth using soil hydraulic properties derived from independent, point measurements. APSIMSWIM is a continuous soil-crop model that simulates infiltration, surface crusting, and soil condition in more detail than most other soil-crop models. Runoff, soil water, and crop growth information measured at sites in southern Queensland was used to test the model. Parameter values were derived directly from soil hydraulic properties measured using rainfall simulators, disc permeameters and ponded rings, and pressure plate apparatus. In general, APSIM-SWIM simulated infiltration, runoff, soil water and the water balance, and yield as accurately and reliably as other soil crop models, indicating the model is suitable for evaluating effects of infiltration and soil-water relations on crop growth. Increased model detail did not hinder application, instead improving parameter transferability and utility, but improved methods of characterising crusting, soil hydraulic conductivity, and macroporosity under field conditions would improve ease of application, prediction accuracy, and reliability of the model. Model utility and accuracy would benefit from improved representation of temporal variation in soil condition, including effects of tillage and consolidation on soil condition and bypass flow in cracks

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    An overview of research activities and achievement in Geotechnics from the Scottish Universities Geotechnics Network (SUGN)

    Get PDF
    ABSTRACT: Design of geotechnical systems is often challenging as it requires the understanding of complex soil behaviour and its influence on field-scale performance of geo-structures. To advance the scientific knowledge and the technological development in geotechnical engineering, a Scottish academic community, named Scottish Universities Geotechnics Network (SUGN), was established in 2001, composing of eight higher education institutions. The network gathers geotechnics researchers, including experimentalists as well as centrifuge, constitutive, and numerical modellers, to generate multiple synergies for building larger collaboration and wider research dissemination in and beyond Scotland. The paper will highlight the research excellence and leading work undertaken in SUGN emphasising some of the contribution to the geotechnical research community and some of the significant research outcomes. RÉSUMÉ: Conception de systèmes géotechniques est souvent difficile car elle nécessite la compréhension du comportement des sols complexes et son influence sur la performance échelle du champ de géo-structures. Pour faire avancer la connaissance scientifique et le développement technologique en ingénierie géotechnique, une communauté universitaire écossais, nommé écossais universités Géotechnique réseau (SUGN), a été créé en 2001, la composition des huit établissements d'enseignement supérieur. Le réseau réunit géotechnique chercheurs, y compris les expérimentateurs ainsi que centrifugeuse, constitutif, et les modélisateurs numériques, de générer des synergies multiples pour la construction de plus grande collaboration et une plus large diffusion de la recherche en Ecosse et au-delà. Le document mettra l'accent sur l'excellence de la recherche et de diriger le travail entrepris dans SUGN soulignant certains de la contribution à la communauté de recherche en géotechnique et certains des résultats importants de la recherche

    Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research

    Get PDF
    Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes

    Virtual Ontogeny of Cortical Growth Preceding Mental Illness

    Get PDF
    Background: Morphology of the human cerebral cortex differs across psychiatric disorders, with neurobiology and developmental origins mostly undetermined. Deviations in the tangential growth of the cerebral cortex during pre/perinatal periods may be reflected in individual variations in cortical surface area later in life. Methods: Interregional profiles of group differences in surface area between cases and controls were generated using T1-weighted magnetic resonance imaging from 27,359 individuals including those with attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, schizophrenia, and high general psychopathology (through the Child Behavior Checklist). Similarity of interregional profiles of group differences in surface area and prenatal cell-specific gene expression was assessed. Results: Across the 11 cortical regions, group differences in cortical area for attention-deficit/hyperactivity disorder, schizophrenia, and Child Behavior Checklist were dominant in multimodal association cortices. The same interregional profiles were also associated with interregional profiles of (prenatal) gene expression specific to proliferative cells, namely radial glia and intermediate progenitor cells (greater expression, larger difference), as well as differentiated cells, namely excitatory neurons and endothelial and mural cells (greater expression, smaller difference). Finally, these cell types were implicated in known pre/perinatal risk factors for psychosis. Genes coexpressed with radial glia were enriched with genes implicated in congenital abnormalities, birth weight, hypoxia, and starvation. Genes coexpressed with endothelial and mural genes were enriched with genes associated with maternal hypertension and preterm birth. Conclusions: Our findings support a neurodevelopmental model of vulnerability to mental illness whereby prenatal risk factors acting through cell-specific processes lead to deviations from typical brain development during pregnancy

    The First Data Release of the Sloan Digital Sky Survey

    Get PDF
    The Sloan Digital Sky Survey has validated and made publicly available its First Data Release. This consists of 2099 square degrees of five-band (u, g, r, i, z) imaging data, 186,240 spectra of galaxies, quasars, stars and calibrating blank sky patches selected over 1360 square degrees of this area, and tables of measured parameters from these data. The imaging data go to a depth of r ~ 22.6 and are photometrically and astrometrically calibrated to 2% rms and 100 milli-arcsec rms per coordinate, respectively. The spectra cover the range 3800--9200 A, with a resolution of 1800--2100. Further characteristics of the data are described, as are the data products themselves.Comment: Submitted to The Astronomical Journal. 16 pages. For associated documentation, see http://www.sdss.org/dr
    corecore