702 research outputs found

    THE EFFECT OF OXEN ON AGRICULTURAL PRODUCTIVITY AND FARM INCOME IN NICARAGUA

    Get PDF
    This study1 uses survey data to assess the effect of oxen as draft animals on agricultural productivity and farm agricultural income in Nicaragua during the year 2017. The results suggest that farms that use oxen to plow the land have higher bean productivity than farms that use stick to plant crops. On average, using oxen increases farm’s bean output by 7.75 100-pound bags, and hiring oxen increases farm’s bean output by 8.5 100-pound bags. Also, using or hiring oxen increases total farm planted area. The main finding about the effect of oxen to plow the land through farm planted area on agricultural farm gross income suggests that using oxen to plow the land increases agricultural farm gross income by 18.13 percent, and that hiring oxen increases agricultural farm gross income by 25.55 percent

    Exocyclic amino groups of flanking guanines govern sequence-dependent adduct conformations and local structural distortions for minor groove-aligned benzo[a]pyrenyl-guanine lesions in a GG mutation hotspot context

    Get PDF
    The environmental carcinogen benzo[a]pyrene (BP) is metabolized to reactive diol epoxides that bind to cellular DNA by predominantly forming N(2)-guanine adducts (G*). Mutation hotspots for these adducts are frequently found in 5′- ··· GG ··· dinucleotide sequences, but their origins are poorly understood. Here we used high resolution NMR and molecular dynamics simulations to investigate differences in G* adduct conformations in 5′- ··· CG*GC ··· and 5′- ··· CGG* C··· sequence contexts in otherwise identical 12-mer duplexes. The BP rings are positioned 5′ along the modified strand in the minor groove in both cases. However, subtle orientational differences cause strong distinctions in structural distortions of the DNA duplexes, because the exocyclic amino groups of flanking guanines on both strands compete for space with the BP rings in the minor groove, acting as guideposts for placement of the BP. In the 5′- ··· CGG* C ··· case, the 5′-flanking G · C base pair is severely untwisted, concomitant with a bend deduced from electrophoretic mobility. In the 5′- ··· CG*GC ··· context, there is no untwisting, but there is significant destabilization of the 5′-flanking Watson–Crick base pair. The minor groove width opens near the lesion in both cases, but more for 5′- ··· CGG*C···. Differential sequence-dependent removal rates of this lesion result and may contribute to the mutation hotspot phenomenon

    Active, but not passive cigarette smoking was inversely associated with mammographic density

    Get PDF
    The opposing carcinogenic and antiestrogenic properties of tobacco smoke may explain why epidemiologic studies have not consistently reported positive associations for active smoking and breast cancer risk. A negative relation between mammographic density, a strong breast cancer risk factor, and active smoking would lend support for an antiestrogenic mechanism. We used multivariable linear regression to assess the associations of active smoking and secondhand smoke (SHS) exposure with mammographic density in 799 pre- and early perimenopausal women in the Study of Women’s Health Across the Nation (SWAN). We observed that current active smoking was associated with 7.2% lower mammographic density, compared to never active smoking and no SHS exposure (p = 0.02). Starting to smoke before 18 years of age and having smoked ≥20 cigarettes/day were also associated with statistically significantly lower percent densities. Among nulliparous women having smoked ≥20 cigarettes/day was associated with 23.8% lower density, compared to having smoked ≤9 cigarettes/day (p < 0.001). Our findings support the hypothesis that tobacco smoke exerts an antiestrogenic effect on breast tissue, but counters the known increased risk of breast cancer with smoking prior to first full-term birth. Thus, our data suggest that the antiestrogenic but not the carcinogenic effects of smoking may be reflected by breast density

    Current Industrial Practices in Assessing CYP450 Enzyme Induction: Preclinical and Clinical

    Get PDF
    Induction of drug metabolizing enzymes, such as the cytochromes P450 (CYP) is known to cause drug-drug interactions due to increased elimination of co-administered drugs. This increased elimination may lead to significant reduction or complete loss of efficacy of the co-administered drug. Due to the significance of such drug interactions, many pharmaceutical companies employ screening and characterization models which predict CYP enzyme induction to avoid or attenuate the potential for drug interactions with new drug candidates. The most common mechanism of CYP induction is transcriptional gene activation. Activation is mediated by nuclear receptors, such as AhR, CAR, and PXR that function as transcription factors. Early high throughput screening models utilize these nuclear hormone receptors in ligand binding or cell-based transactivation/reporter assays. In addition, immortalized hepatocyte cell lines can be used to assess enzyme induction of specific drug metabolizing enzymes. Cultured primary human hepatocytes, the best established in vitro model for predicting enzyme induction and most accepted by regulatory agencies, is the predominant assay used to evaluate induction of a wide variety of drug metabolizing enzymes. These in vitro models are able to appropriately predict enzyme induction in patients when compared to clinical drug-drug interactions. Finally, transgenic animal models and the cynomolgus monkey have also been shown to recapitulate human enzyme induction and may be appropriate in vivo animal models for predicting human drug interactions
    corecore