11 research outputs found

    Conversion of an intensified fed-batch to an integrated continuous bioprocess

    Get PDF
    Please click Additional Files below to see the full abstract

    S-Phase entry upon ectopic expression of G1 cyclin-dependent kinases in the absence of retinoblastoma protein phosphorylation

    Get PDF
    AbstractIn mammalian cells, the retinoblastoma protein (Rb) is thought to negatively regulate progression through the G1 phase of the cell cycle by its association with the transcription factor E2F [1–3]. Rb–E2F complexes suppress transcription of genes required for DNA synthesis ([4], reviewed in [3,5]), and the prevailing view is that phosphorylation of Rb by complexes of cyclin-dependent kinases (Cdks) and their regulatory cyclin subunits, and the subsequent release of active E2F, is required for S-phase entry [1–3]. This view is based, in part, on the fact that ectopic expression of cyclin–Cdks leads to Rb phosphorylation and that this modification correlates with S-phase entry [6–8]. In Drosophila, however, cyclin E expression can bypass a requirement for E2F, suggesting that cyclins may activate replication independently of the Rb/E2F pathway [9]. We sought to examine whether Rb phosphorylation is a prerequisite for S-phase entry in Rb-deficient SAOS-2 osteosarcoma cells, using a commonly used cotransfection assay [6–8,10]. We find that a G1 arrest in SAOS-2 cells mediated by an Rb mutant lacking all 14 consensus Cdk phosphorylation sites is bypassed by coexpressing G1-specific E-type or D-type cyclin–Cdk complexes, and that injection of purified cyclin–Cdks during G1 accelerates S-phase entry. Our results indicate that Rb phosphorylation is not essential for S-phase entry when G1 cyclin–Cdks are overexpressed, and that other substrates of these kinases can be rate-limiting for the G1 to S-phase transition. These data also reveal that the SAOS-2 cotransfection assay is complicated by Rb-independent effects of the coexpressed Cdks

    Spatially Heterogeneous Refugia and Predation Risk in Intertidal Salt Marshes

    No full text
    The effect of habitat structure on interactions between predators and prey may vary spatially. In estuarine salt marshes, heterogeneity in refuge quality derives from spatial variation in vegetation structure and in tidal inundation. We investigated whether predation by blue crabs on periwinkle snails was influenced by distance from the seaward edge of the salt marsh and by characteristics of the primary habitat structure, smooth cordgrass (Spartina alterniflora). Spartina may provide refuge for snails and interfere with foraging by crabs. Furthermore, predation risk should decline with distance from the seaward edge because landward regions require more travel time for crabs during tidal inundation. We investigated these processes using a comparative survey of snails and habitat traits, an experiment that assessed the crab population and measured predation risk, and a size-structured model that estimated encounter rates. Taken together, these approaches indicated that predation risk for snails was lower where Spartina was present and was lower in a landward direction. Furthermore, Spartina architecture and distance from the seaward edge interacted. The strength of the predation gradient between seaward and landward regions of the marsh was greater where Spartina was tall or dense. These predation gradients emerge because vegetation and distance inland decrease encounter rates between crabs and snails. This study suggests that habitat modification, a process not uncommon in salt marshes, may have consequences for interactions among intertidal fauna

    Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases

    No full text
    Notch signaling plays a role in normal lymphocyte development and function. Activating Notch1-mutations, leading to aberrant downstream signaling, have been identified in human T-cell acute lymphoblastic leukemia (T-ALL). While this highlights the contribution of Notch signaling to T-ALL pathogenesis, the mechanisms by which Notch regulates proliferation and survival in normal and leukemic T cells are not fully understood. Our findings identify a role for Notch signaling in G1-S progression of cell cycle in T cells. Here we show that expression of the G1 proteins, cyclin D3, CDK4, and CDK6, is Notch-dependent both in vitro and in vivo, and we outline a possible mechanism for the regulated expression of cyclin D3 in activated T cells via CSL (CBF-1, mammals; suppressor of hairless, Drosophila melanogaster; Lag-1, Caenorhabditis elegans), as well as a noncanonical Notch signaling pathway. While cyclin D3 expression contributes to cell-cycle progression in Notch-dependent human T-ALL cell lines, ectopic expression of CDK4 or CDK6 together with cyclin D3 shows partial rescue from Îł-secretase inhibitor (GSI)-induced G1 arrest in these cell lines. Importantly, cyclin D3 and CDK4 are highly overexpressed in Notch-dependent T-cell lymphomas, justifying the combined use of cell-cycle inhibitors and GSI in treating human T-cell malignancies
    corecore