23 research outputs found

    Tumor ablation with irreversible electroporation.

    Get PDF
    We report the first successful use of irreversible electroporation for the minimally invasive treatment of aggressive cutaneous tumors implanted in mice. Irreversible electroporation is a newly developed non-thermal tissue ablation technique in which certain short duration electrical fields are used to permanently permeabilize the cell membrane, presumably through the formation of nanoscale defects in the cell membrane. Mathematical models of the electrical and thermal fields that develop during the application of the pulses were used to design an efficient treatment protocol with minimal heating of the tissue. Tumor regression was confirmed by histological studies which also revealed that it occurred as a direct result of irreversible cell membrane permeabilization. Parametric studies show that the successful outcome of the procedure is related to the applied electric field strength, the total pulse duration as well as the temporal mode of delivery of the pulses. Our best results were obtained using plate electrodes to deliver across the tumor 80 pulses of 100 micros at 0.3 Hz with an electrical field magnitude of 2500 V/cm. These conditions induced complete regression in 12 out of 13 treated tumors, (92%), in the absence of tissue heating. Irreversible electroporation is thus a new effective modality for non-thermal tumor ablation

    Tumor ablation with irreversible electroporation.

    Get PDF
    We report the first successful use of irreversible electroporation for the minimally invasive treatment of aggressive cutaneous tumors implanted in mice. Irreversible electroporation is a newly developed non-thermal tissue ablation technique in which certain short duration electrical fields are used to permanently permeabilize the cell membrane, presumably through the formation of nanoscale defects in the cell membrane. Mathematical models of the electrical and thermal fields that develop during the application of the pulses were used to design an efficient treatment protocol with minimal heating of the tissue. Tumor regression was confirmed by histological studies which also revealed that it occurred as a direct result of irreversible cell membrane permeabilization. Parametric studies show that the successful outcome of the procedure is related to the applied electric field strength, the total pulse duration as well as the temporal mode of delivery of the pulses. Our best results were obtained using plate electrodes to deliver across the tumor 80 pulses of 100 micros at 0.3 Hz with an electrical field magnitude of 2500 V/cm. These conditions induced complete regression in 12 out of 13 treated tumors, (92%), in the absence of tissue heating. Irreversible electroporation is thus a new effective modality for non-thermal tumor ablation

    Induction of glutathione synthesis explains pharmacodynamics of high-dose busulfan in mice and highlights putative mechanisms of drug interaction.

    No full text
    Busulfan is an example of a drug eliminated through glutathione S-transferase (GST)-catalyzed conjugation with reduced glutathione (GSH). We studied the pharmacokinetics and toxicity of busulfan in C57BL6 mice in correlation with liver GST activity and GSH synthesis by accurate determination of precursors, namely, gamma-glutamyl-cysteine and cysteine. A significantly lower incidence of acute toxicity was observed in mice receiving busulfan 16.5 mg/kg twice a day compared with animals receiving 33 mg/kg once a day. In both cases, a total dose of 132 mg/kg was administered over 4 days. The difference in toxicity was explained by pharmacokinetics since a strong induction of clearance was observed only in animals treated twice daily. Induction of metabolism was correlated with an increase in liver cysteine content and enhanced glutathione synthesis rate, whereas GST activity was unchanged. To our knowledge, this is the first time that in vivo flux of GSH synthesis has been shown to be closely related to a drug plasma clearance and toxicity. These results allow hypothesizing that GSH liver synthesis may directly influence busulfan clearance in humans with possible implications in the occurrence of hepatic veno-occlusive disease

    Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness.

    Get PDF
    Angiopoietin-like 4 (ANGPTL4), a secreted protein of the angiopoietin-like family, is induced by hypoxia in both tumor and endothelial cells as well as in hypoxic perinecrotic areas of numerous cancers. Here, we investigated whether ANGPTL4 might affect tumor growth as well as metastasis. Metastatic 3LL cells were therefore xenografted into control mice and mice in which ANGPTL4 was expressed by using in vivo DNA electrotransfer. Whereas primary tumors grew at a similar rate in both groups, 3LL cells metastasized less efficiently to the lungs of mice that expressed ANGPTL4. Fewer 3LL emboli were observed in primary tumors, suggesting that intravasation of 3LL cells was inhibited by ANGPTL4. Furthermore, melanoma B16F0 cells injected into the retro-orbital sinus also metastasized less efficiently in mice expressing ANGPTL4. Although B16F0 cells were observed in lung vessels, they rarely invaded the parenchyma, suggesting that ANGPTL4 affects extravasation. In addition, recombinant B16F0 cells that overexpress ANGPTL4 were generated, showing a lower capacity for in vitro migration, invasion, and adhesion than control cells. Expression of ANGPTL4 induced reorganization of the actin cytoskeleton through inhibition of actin stress fiber formation and vinculin localization at focal contacts. Together, these results show that ANGPTL4, through its action on both vascular and tumor compartments, prevents the metastatic process by inhibiting vascular activity as well as tumor cell motility and invasiveness

    Details of the experimental conditions tested and summary of the antitumor effects achieved.

    No full text
    <p>In all experiments except 1B and 1C, the pulses were delivered in 2 perpendicular orientations. The EP were delivered using a Cliniporator in all conditions except 1L, 2B and 2F for which a Jouan device was used (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0001135#s2" target="_blank">Methods</a>). Exp: experimental condition; n: number of pulses; t: individual pulse duration; U/d: voltage to distance ratio (approximate electric field strength); d: distance between the plate electrodes; f: repetition frequency; T<sub>max</sub>: theoretical maximum temperature; t<sub>43</sub>: theoretical equivalent thermal dose; CR: number of complete regressions/number of treated tumors, and percentage of CR.</p
    corecore