4,222 research outputs found

    Experimental constraints on the uncoupled Galileon model from SNLS3 data and other cosmological probes

    Get PDF
    The Galileon model is a modified gravity theory that may provide an explanation for the accelerated expansion of the Universe. This model does not suffer from instabilities or ghost problems (normally associated with higher-order derivative theories), restores local General Relativity -- thanks to the Vainshtein screening effect -- and predicts late time acceleration of the expansion. In this paper, we derive a new definition of the Galileon parameters that allows us to avoid having to choose initial conditions for the Galileon field, and then test this model against precise measurements of the cosmological distances and the rate of growth of cosmic structures. We observe a small tension between the constraints set by growth data and those from distances. However, we find that the Galileon model remains consistent with current observations and is still competitive with the \Lambda CDM model, contrary to what was concluded in recent publications.Comment: 19 pages, 15 figures, accepted to Astronomy and Astrophysic

    First experimental constraints on the disformally coupled Galileon model

    Get PDF
    The Galileon model is a modified gravity model that can explain the late-time accelerated expansion of the Universe. In a previous work, we derived experimental constraints on the Galileon model with no explicit coupling to matter and showed that this model agrees with the most recent cosmological data. In the context of braneworld constructions or massive gravity, the Galileon model exhibits a disformal coupling to matter, which we study in this paper. After comparing our constraints on the uncoupled model with recent studies, we extend the analysis framework to the disformally coupled Galileon model and derive the first experimental constraints on that coupling, using precise measurements of cosmological distances and the growth rate of cosmic structures. In the uncoupled case, with updated data, we still observe a low tension between the constraints set by growth data and those from distances. In the disformally coupled Galileon model, we obtain better agreement with data and favour a non-zero disformal coupling to matter at the 2.5σ2.5\sigma level. This gives an interesting hint of the possible braneworld origin of Galileon theory.Comment: 9 pages, 6 figures, updated versio

    Harmonic Maa{\ss}-Jacobi forms of degree 1 with higher rank indices

    Full text link
    We define and investigate real analytic weak Jacobi forms of degree 1 and arbitrary rank. En route we calculate the Casimir operator associated to the maximal central extension of the real Jacobi group, which for rank exceeding 1 is of order 4. In ranks exceeding 1, the notions of H-harmonicity and semi-holomorphicity are the same.Comment: 28 page

    MULTIPLE-SOURCE URBAN ATMOSPHERIC DISPERSION MODEL.

    Full text link

    Anthropogenic impact on amorphous silica pools in temperate soils

    Get PDF
    Human land use changes perturb biogeochemical silica (Si) cycling in terrestrial ecosystems. This directly affects Si mobilisation and Si storage and influences Si export from the continents, although the magnitude of the impact is unknown. A major reason for our lack of understanding is that very little information exists on how land use affects amorphous silica (ASi) storage in soils. We have quantified and compared total alkali-extracted (PSi<sub>a</sub>) and easily soluble (PSi<sub>e</sub>) Si pools at four sites along a gradient of anthropogenic disturbance in southern Sweden. Land use clearly affects ASi pools and their distribution. Total PSi</sub>a</sub> and PSi<sub>e</sub> for a continuous forested site at Siggaboda Nature Reserve (66 900 ± 22 800 kg SiO<sub>2</sub> ha<sup>−1</sup> and 952 ± 16 kg SiO<sub>2</sub> ha<sup>−1</sup>) are significantly higher than disturbed land use types from the Råshult Culture Reserve including arable land (28 800 ± 7200 kg SiO<sub>2</sub> ha<sup>−1</sup> and 239 ± 91 kg SiO<sub>2</sub> ha<sup>−1</sup>), pasture sites (27 300 ± 5980 kg SiO<sub>2</sub> ha<sup>−1</sup> and 370 ± 129 kg SiO<sub>2</sub> ha<sup>−1</sup>) and grazed forest (23 600 ± 6370 kg SiO<sub>2</sub> ha<sup>−1</sup> and 346 ± 123 kg SiO<sub>2</sub> ha<sup>−1</sup>). Vertical PSi<sub>a</sub> and PSi<sub>e</sub> profiles show significant (<i>p</i> < 0.05) variation among the sites. These differences in size and distribution are interpreted as the long-term effect of reduced ASi replenishment, as well as changes in ecosystem specific pedogenic processes and increased mobilisation of the PSi<sub>a</sub> in disturbed soils. We have also made a first, though rough, estimate of the magnitude of change in temperate continental ASi pools due to human disturbance. Assuming that our data are representative, we estimate that total ASi storage in soils has declined by ca. 10 % since the onset of agricultural development (3000 BCE). Recent agricultural expansion (after 1700 CE) may have resulted in an average additional export of 1.1 ± 0.8 Tmol Si yr<sup>−1</sup> from the soil reservoir to aquatic ecosystems. This is ca. 20 % to the global land-ocean Si flux carried by rivers. It is necessary to update this estimate in future studies, incorporating differences in pedology, geology and climatology over temperate regions, but data are currently not sufficient. Yet, our results emphasize the importance of human activities for Si cycling in soils and for the land-ocean Si flux

    Влияние условий синтеза на размер наночастиц железа

    Get PDF
    Показана возможность получения наночастиц железа разного размера путем варьирования условий синтеза. Методами электронной микроскопии, ИК спектроскопии и электронной дифракции изучена их морфология и структура. Установлено, что при нанесении наночастиц железа на угольный носитель размер, распределение и строение частиц не меняется.Показана можливість отримання наночастинок заліза різного розміру шляхом варіювання умов синтезу. Методами електронної мікроскопії, ІЧ спектроскопії та електронної дифракції вивчено їх морфологію та структуру. Знайдено, що при нанесенні наночастинок заліза на носії розмір, розподіл та будова не змінюється.The preparation of monodisperse Fe nanoparticles of various sizes by varying synthesis conditions is reported. Nanoparticles have been studied by transmission electron microscopy, IR spectroscopy, and electron diffraction. It was shown that Fe nanoparticles do not change its size, distribution, and structure after impregnation of support
    corecore