28 research outputs found
Original paper Cell free DNA as a marker of training status in weightlifters
The purpose of this investigation was to elucidate the changes in cf-DNA as it relates to fluctuations in resistance training workloads and intensities. The relationship between cell free DNA (cf-DNA), C-reactive protein (CRP), creatine kinase (CK), testosterone (T), cortisol (C), testosterone-cortisol ratio (T:C), body mass and body composition were also examined. Eight weightlifters (5 males and 3 females, age = 25 ± 3.5 yr, body mass = 88.3 ± 22.7 kg, height = 173.8 ±8.4 cm) volunteered to participate in this study. Venous blood samples, body mass and body composition were taken six times, each corresponding to the end of a training phase. CK (p = 0.018, η² = 0.409) and CK %Δ (p \u3c 0.001, η² = 0.594) were the only biochemical variables to reach statistical significance at any point. A number of statistically significant correlations were found among variables. VLD4wk was related to CK %Δ (r = 0.86), VLD4wk %Δ was related CK %Δ (r = 0.86) and TID1wk was related to CRP (r = 0.83). cf-DNA %Δ was correlated with CRP and CRP %Δ (r = 0.83 and 0.86, respectively). CRP and CRP %Δ were correlated with BF % (r = 0.94 and 0.92, respectively). CK and CK %Δ were both related to T:C (r = 0.94 and 0.89, respectively) and T:C %Δ (r = 0.87 and 0.86, respectively). The correlation between cf-DNA and CRP suggests that cf-DNA may be a valuable indicator of inflammation in weightlifters
Cell Free Dna As A Marker Of Training Status In Weightlifters
The purpose of this investigation was to elucidate the changes in cf-DNA as it relates to fluctuations in resistance training workloads and intensities. The relationship between cell free DNA (cf-DNA), C-reactive protein (CRP), creatine kinase (CK), testosterone (T), cortisol (C), testosterone-cortisol ratio (T:C), body mass and body composition were also examined. Eight weightlifters (5 males and 3 females, age = 25 ± 3.5 yr, body mass = 88.3 ± 22.7 kg, height = 173.8 ±8.4 cm) volunteered to participate in this study. Venous blood samples, body mass and body composition were taken six times, each corresponding to the end of a training phase. CK (p = 0.018, η² = 0.409) and CK %Δ (p \u3c 0.001, η² = 0.594) were the only biochemical variables to reach statistical significance at any point. A number of statistically significant correlations were found among variables. VLD4wk was related to CK %Δ (r = 0.86), VLD4wk %Δ was related CK %Δ (r = 0.86) and TID1wk was related to CRP (r = 0.83). cf-DNA %Δ was correlated with CRP and CRP %Δ (r = 0.83 and 0.86, respectively). CRP and CRP %Δ were correlated with BF % (r = 0.94 and 0.92, respectively). CK and CK %Δ were both related to T:C (r = 0.94 and 0.89, respectively) and T:C %Δ (r = 0.87 and 0.86, respectively). The correlation between cf-DNA and CRP suggests that cf-DNA may be a valuable indicator of inflammation in weightlifters
Cell Free DNA as a Marker of Training Status in Weightlifters
The purpose of this investigation was to elucidate the changes in cf-DNA as it relates to fluctuations in resistance training workloads and intensities. The relationship between cell free DNA (cf-DNA), C-reactive protein (CRP), creatine kinase (CK), testosterone (T), cortisol (C), testosterone-cortisol ratio (T:C), body mass and body composition were also examined. Eight weightlifters (5 males and 3 females, age = 25 ± 3.5 yr, body mass = 88.3 ± 22.7 kg, height = 173.8 ±8.4 cm) volunteered to participate in this study. Venous blood samples, body mass and body composition were taken six times, each corresponding to the end of a training phase. CK (p = 0.018, η² = 0.409) and CK %Δ (p \u3c 0.001, η² = 0.594) were the only biochemical variables to reach statistical significance at any point. A number of statistically significant correlations were found among variables. VLD4wk was related to CK %Δ (r = 0.86), VLD4wk %Δ was related CK %Δ (r = 0.86) and TID1wk was related to CRP (r = 0.83). cf-DNA %Δ was correlated with CRP and CRP %Δ (r = 0.83 and 0.86, respectively). CRP and CRP %Δ were correlated with BF % (r = 0.94 and 0.92, respectively). CK and CK %Δ were both related to T:C (r = 0.94 and 0.89, respectively) and T:C %Δ (r = 0.87 and 0.86, respectively). The correlation between cf-DNA and CRP suggests that cf-DNA may be a valuable indicator of inflammation in weightlifters
Superconducting phase diagram and FFLO signature in -(BETS)GaCl from rf penetration depth measurements
We report the phase diagram of -(BETS)GaCl from rf
penetration depth measurements with a tunnel diode oscillator in a pulsed
magnetic field. We examined four samples with 1100 field sweeps in a range of
angles with the magnetic field parallel and perpendicular to the conducting
planes. In the parallel direction, appears to include a tricritical
point at 1.6 K and 10 T with a phase line that increases to 11 T as the
temperature is decreased to} 500 mK. The second phase line forms a clearly
defined high field low temperature region satisfying several of the conditions
of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. We show remarkably good
fits of to WHH in the reentrant , regime.
We also note a sharp angle dependence of the phase diagram about the field
parallel orientation that characterizes Pauli paramagnetic limiting and further
supports the possibility of FFLO behavior. Unrelated to the FFLO study, at
fields and temperatures below and , we find rich structure in the
penetration depth data that we attribute to impurities at the surface altering
the superconducting properties while maintaining the same crystallographic axes
as .Comment: Fina
A damage model based on failure threshold weakening
A variety of studies have modeled the physics of material deformation and
damage as examples of generalized phase transitions, involving either critical
phenomena or spinodal nucleation. Here we study a model for frictional sliding
with long range interactions and recurrent damage that is parameterized by a
process of damage and partial healing during sliding. We introduce a failure
threshold weakening parameter into the cellular-automaton slider-block model
which allows blocks to fail at a reduced failure threshold for all subsequent
failures during an event. We show that a critical point is reached beyond which
the probability of a system-wide event scales with this weakening parameter. We
provide a mapping to the percolation transition, and show that the values of
the scaling exponents approach the values for mean-field percolation (spinodal
nucleation) as lattice size is increased for fixed . We also examine the
effect of the weakening parameter on the frequency-magnitude scaling
relationship and the ergodic behavior of the model
Truncated mass divergence in a Mott metal
The Mott metal–insulator transition represents one of the most fundamental phenomena in condensed matter physics. Yet, basic tenets of the canonical Brinkman-Rice picture of Mott localization remain to be tested experimentally by quantum oscillation measurements that directly probe the quasiparticle Fermi surface and effective mass. By extending this technique to high pressure, we have examined the metallic state on the threshold of Mott localization in clean, undoped crystals of NiS2. We find that i) on approaching Mott localization, the quasiparticle mass is strongly enhanced, whereas the Fermi surface remains essentially unchanged; ii) the quasiparticle mass closely follows the divergent form predicted theoretically, establishing charge carrier slowdown as the driver for the metal–insulator transition; iii) this mass divergence is truncated by the metal–insulator transition, placing the Mott critical point inside the insulating section of the phase diagram. The inaccessibility of the Mott critical point in NiS2 parallels findings at the threshold of ferromagnetism in clean metallic systems, in which criticality at low temperature is almost universally interrupted by first-order transitions or novel emergent phases such as incommensurate magnetic order or unconventional superconductivity
Pressure-induced shift of effective Ce valence, Fermi energy and phase boundaries in CeOs4Sb12
CeOs4Sb12, a member of the skutterudite family, has an unusual semimetallic low-temperature L-phase that inhabits a wedge-like area of the field H - temperature T phase diagram. We have conducted measurements of electrical transport and megahertz conductivity on CeOs4Sb12 single crystals under pressures of up to 3 GPa and in high magnetic fields of up to 41 T to investigate the influence of pressure on the different H-T phase boundaries. While the high-temperature valence transition between the metallic H-phase and the L-phase is shifted to higher T by pressures of the order of 1 GPa, we observed only a marginal suppression of the S-phase that is found below 1 K for pressures of up to 1.91 GPa. High-field quantum oscillations have been observed for pressures up to 3.0 GPa and the Fermi surface of the highfield side of the H-phase is found to show a surprising decrease in size with increasing pressure, implying a change in electronic structure rather than a mere contraction of lattice parameters. We evaluate the field-dependence of the effective masses for different pressures and also reflect on the sample dependence of some of the properties of CeOs4Sb12 which appears to be limited to the low-field region
The 2015 Plains Elevated Convection at Night Field Project
The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night.
To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings