7 research outputs found

    BMI1 fine-tunes gene repression and activation to safeguard undifferentiated spermatogonia fate

    Get PDF
    Introduction: Spermatogenesis is sustained by the homeostasis of self-renewal and differentiation of undifferentiated spermatogonia throughout life, which is regulated by transcriptional and posttranscriptional mechanisms. B cell-specific Moloney murine leukemia virus integration site 1 (BMI1), one of spermatogonial stem cell markers, is a member of Polycomb repressive complex 1 (PRC1) and important to spermatogenesis. However, the mechanistic underpinnings of how BMI1 regulates spermatogonia fate remain elusive.Methods: We knocked down BMI1 by siRNA to investigate the role of BMI1 in undifferentiated spermatogonia. Differentially expressed genes were identified by RNA-seq and used for KEGG pathway analysis. We performed ChIP-seq analysis in wild type and BMI1 knockdown cells to explore the underlying molecular mechanisms exerted by BMI1. BMI1-associated alterations in repressive histone modifications were detected via Western blotting and ChIP-seq. Furthermore, we performed mass spectrometry and Co-immunoprecipitation assays to investigate BMI1 co-factors. Finally, we demonstrated the genomic regions occupied by both BMI1 and its co-factor.Results: BMI1 is required for undifferentiated spermatogonia maintenance by both repressing and activating target genes. BMI1 preserves PI3K-Akt signaling pathway for spermatogonia proliferation. Decrease of BMI1 affects the deposition of repressive histone modifications H2AK119ub1 and H3K27me3. BMI also positively regulates H3K27ac deposited genes which are associated with proliferation. Moreover, we demonstrate that BMI1 interacts with Sal-like 4 (SALL4), the transcription factor critical for spermatogonia function, to co-regulate gene expression.Discussion: Overall, our study reveals that BMI1 safeguards undifferentiated spermatogonia fate through multi-functional roles in regulating gene expression programs of undifferentiated spermatogonia

    A Subunit Vaccine Candidate Composed of Mpox Virus A29L, M1R, A35R, and B6R Elicits Robust Immune Response in Mice

    No full text
    With no specific antiviral drugs and preventive vaccines against Mpox virus (MPXV), the epidemic has led to the declaration of a Public Health Emergency of International Concern. As a developmental direction for new vaccines, studies of subunit vaccines based upon MPXV antigen proteins are lacking. In this study, A29L, M1R, A35R, and B6R of MPXV were expressed and purified from a prokaryotic system. The four MPXV antigen proteins in combination were mixed with aluminum hydroxide or CpG7909 as adjuvant, and subsequently used to inoculate mice. The results of enzyme-linked immunosorbent assay (ELISA), flow cytometry analyses, and enzyme-linked immunospot (ELISPOT) assays indicated that A29L, M1R, A35R, and B6R elicited high-level antigen-specific antibodies and CD4+ T cells-based cellular immune response in mice. Moreover, the results of virus neutralization assays suggested that sera from the mice immunized with four proteins elicited high neutralizing activities against the vaccinia virus. Notably, the results of ELISA, ELISPOT, and virus neutralization assays also showed that the CpG7909 adjuvant was more effective in inducing an immune response compared with the aluminum adjuvant. In summary, this study offers valuable insights for further studies of subunit vaccine candidates for the prevention of MPXV and other orthomyxoviruses

    2cChIP-seq and 2cMeDIP-seq: The Carrier-Assisted Methods for Epigenomic Profiling of Small Cell Numbers or Single Cells

    No full text
    Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) can profile genome-wide epigenetic marks associated with regulatory genomic elements. However, conventional ChIP-seq is challenging when examining limited numbers of cells. Here, we developed a new technique by supplementing carrier materials of both chemically modified mimics with epigenetic marks and dUTP-containing DNA fragments during conventional ChIP procedures (hereafter referred to as 2cChIP-seq), thus dramatically improving immunoprecipitation efficiency and reducing DNA loss of low-input ChIP-seq samples. Using this strategy, we generated high-quality epigenomic profiles of histone modifications or DNA methylation in 10–1000 cells. By introducing Tn5 transposase-assisted fragmentation, 2cChIP-seq reliably captured genomic regions with histone modification at the single-cell level in about 100 cells. Moreover, we characterized the methylome of 100 differentiated female germline stem cells (FGSCs) and observed a particular DNA methylation signature potentially involved in the differentiation of mouse germline stem cells. Hence, we provided a reliable and robust epigenomic profiling approach for small cell numbers and single cells

    Alterations of gut microbiota contribute to the progression of unruptured intracranial aneurysms

    No full text
    Unruptured intracranial aneurysm (UIA) is a life-threatening cerebrovascular condition. Here the authors report altered gut microbiota including low abundance of Hungatella hathewayi in patients with UIAs, and show that supplementation with Hungatella hathewayi or the metabolite taurine prevents UIAs in mice
    corecore