70 research outputs found

    Potential of remote sensing and open street data for flood mapping in poorly gauged areas: a case study in Gonaives, Haiti

    Get PDF
    The Hispaniola Island, in the Caribbean tropical zone, is prone to extreme flood events. Floods are caused by tropical springs and hurricanes and may lead to human losses, economical damages, and spreading of waterborne diseases. Flood studies based upon hydrological and hydraulic modelling are hampered by almost complete lack of hydro-meteorological data. Thenceforth, and given the cost and complexity in the organization of field measurement campaigns, the need for exploitation of remote sensing data, and open source data bases. We present here a feasibility study to explore the potential of (i) high-resolution of digital elevation models (DEMs) from remote imagery and (ii) remotely sensed precipitation data, to feed hydrological flow routing and hydraulic flood modelling, applied to the case study of river La Quinte closed to Gonaives (585 km2), Haiti. We studied one recent flood episode, namely hurricane Ike in 2008, when flood maps from remote sensing were available for validation. The atmospheric input given by hourly rainfall was taken from downscaled Tropical Rainfall Measuring Mission (TRMM) daily estimates, and subsequently fed to a semi-distributed DEM-based hydrological model, providing an hourly flood hydrograph. Then, flood modelling using Hydrologic Engineering Center River Analysis System (HEC-RAS 1D, one-dimensional model for unsteady open channel flow) was carried out under different scenarios of available digital elevation models. The DEMs were generated using optical remote sensing satellite WorldView-1 and Shuttle Radar Topography Mission (SRTM), combined with information from an open source database (OpenStreetMap). Observed flood extent and land use have been extracted using Système Pour l’Observation de la Terre-4 (SPOT-4) imagery. The hydraulic model was tuned for floodplain friction against the observed flooded area. We compared different scenarios of flood simulation and the predictive power given by model tuning. Our study provides acceptable results in depicting flooded areas, especially considering the tremendous lack of ground data, and shows the potential of hydrological modelling approach fed by remote sensing information in Haiti, and in similarly data-scarce areas. Our approach may be useful to provide depiction of flooded areas for the purpose of (i) flood design for urban planning under a frequency-driven approach and (ii) forecasting of flooded areas for warning procedures, pending availability of weather forecast with proper lead time

    Linear-quadratic optimal control under non-Markovian switching

    Get PDF
    We study a finite-dimensional continuous-time optimal control problem on finite horizon for a controlled diffusion driven by Brownian motion, in the linear-quadratic case. We admit stochastic coefficients, possibly depending on an underlying independent marked point process, so that our model is general enough to include controlled switching systems where the switching mechanism is not required to be Markovian. The problem is solved by means of a Riccati equation, which a backward stochastic differential equation driven by the Brownian motion and by the random measure associated to the marked point process

    On the monotone stability approach to BSDEs with jumps: Extensions, concrete criteria and examples

    Full text link
    We show a concise extension of the monotone stability approach to backward stochastic differential equations (BSDEs) that are jointly driven by a Brownian motion and a random measure for jumps, which could be of infinite activity with a non-deterministic and time inhomogeneous compensator. The BSDE generator function can be non convex and needs not to satisfy global Lipschitz conditions in the jump integrand. We contribute concrete criteria, that are easy to verify, for results on existence and uniqueness of bounded solutions to BSDEs with jumps, and on comparison and a-priori LL^{\infty}-bounds. Several examples and counter examples are discussed to shed light on the scope and applicability of different assumptions, and we provide an overview of major applications in finance and optimal control.Comment: 28 pages. Added DOI https://link.springer.com/chapter/10.1007%2F978-3-030-22285-7_1 for final publication, corrected typo (missing gamma) in example 4.1

    Differentiability of backward stochastic differential equations in Hilbert spaces with monotone generators

    Get PDF
    The aim of the present paper is to study the regularity properties of the solution of a backward stochastic differential equation with a monotone generator in infinite dimension. We show some applications to the nonlinear Kolmogorov equation and to stochastic optimal control

    Comparison of the LUNA 3He(alpha,gamma)7Be activation results with earlier measurements and model calculations

    Full text link
    Recently, the LUNA collaboration has carried out a high precision measurement on the 3He(alpha,gamma)7Be reaction cross section with both activation and on-line gamma-detection methods at unprecedented low energies. In this paper the results obtained with the activation method are summarized. The results are compared with previous activation experiments and the zero energy extrapolated astrophysical S factor is determined using different theoretical models.Comment: Accepted for publication in Journal of Physics

    Activation measurement of the 3He(alpha,gamma)7Be cross section at low energy

    Full text link
    The nuclear physics input from the 3He(alpha,gamma)7Be cross section is a major uncertainty in the fluxes of 7Be and 8B neutrinos from the Sun predicted by solar models and in the 7Li abundance obtained in big-bang nucleosynthesis calculations. The present work reports on a new precision experiment using the activation technique at energies directly relevant to big-bang nucleosynthesis. Previously such low energies had been reached experimentally only by the prompt-gamma technique and with inferior precision. Using a windowless gas target, high beam intensity and low background gamma-counting facilities, the 3He(alpha,gamma)7Be cross section has been determined at 127, 148 and 169 keV center-of-mass energy with a total uncertainty of 4%. The sources of systematic uncertainty are discussed in detail. The present data can be used in big-bang nucleosynthesis calculations and to constrain the extrapolation of the 3He(alpha,gamma)7Be astrophysical S-factor to solar energies

    Hydrology and potential climate changes in the Rio Maipo (Chile)

    Get PDF
    Glaciers of the central Andes have recently been retreating in response to global warming, with large consequences on the hydrological regime. We assessed here potential climate change impacts until 2100 upon the hydrologic regime of the largely snow-ice melt driven Maipo River basin (closed at El Manzano, ca. 4800 km2), watering 7 M people in the metropolitan region of Santiago de Chile. First, a weather-driven hydrological model including simplified glaciers\u2019 cover dynamics was set up and validated, to depict the hydrological regime of this area. In situ data from recent glaciological expeditions, ice thickness estimates, historical weather and hydrological data, and remote sensing data including precipitation from the Tropical Rainfall Measuring Mission (TRMM), and snow cover and temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) were used for model set up. We subsequently forced the model with projections of temperatures and precipitations (plus downscaling) until 2100 from the GCM model ECHAM6, according to 3 different radiative concentration pathways (RCPs 2.6, 4.5, 8.5) adopted by the IPCC in its AR5. We investigated yearly and seasonal trends of precipitation, temperature and hydrological fluxes until 2100 under the different scenarios, in projection period (PR, 2014-2100), and we compared them against historically observed trends in control period (CP, 1980-2013). The results show potential significant increasing trends in temperature until 2100, consistently with observed historical trends, unless for Spring (OND). Precipitation varies more uncertainly, with no historically significant changes, and only few scenarios projecting significant variations. In the PR period, yearly flow decreases, significantly under RCP8.5 (-0.31 m3s-1). Flow decrease is expected especially in Summer (JFM) under RCP8.5 (-0.55 m3s-1). Fall (AMJ) flows would decrease slightly, while winter (JAS) flows are projected to increase, and significantly under RCP4.5 (+0.22 m3s-1), as due to sustained melting therein. Spring (OND) flows also would decrease largely under RCP8.5, down to -0.67 m3s-1, due to increased evapotranspiration for high temperatures

    The 3He(alpha,gamma)7Be S-factor at solar energies: the prompt gamma experiment at LUNA

    Full text link
    The 3He(alpha,gamma)7Be process is a key reaction in both Big-Bang nucleosynthesis and p-p chain of Hydrogen Burning in Stars. A new measurement of the 3He(alpha,gamma)7Be cross section has been performed at the INFN Gran Sasso underground laboratory by both the activation and the prompt gamma detection methods. The present work reports full details of the prompt gamma detection experiment, focusing on the determination of the systematic uncertainty. The final data, including activation measurements at LUNA, are compared with the results of the last generation experiments and two different theoretical models are used to obtain the S-factor at solar energies.Comment: Accepted for publication in Nucl. Phys.

    Ultra-sensitive in-beam gamma-ray spectroscopy for nuclear astrophysics at LUNA

    Full text link
    Ultra-sensitive in-beam gamma-ray spectroscopy studies for nuclear astrophysics are performed at the LUNA (Laboratory for Underground Nuclear Astrophysics) 400 kV accelerator, deep underground in Italy's Gran Sasso laboratory. By virtue of a specially constructed passive shield, the laboratory gamma-ray background for E_\gamma < 3 MeV at LUNA has been reduced to levels comparable to those experienced in dedicated offline underground gamma-counting setups. The gamma-ray background induced by an incident alpha-beam has been studied. The data are used to evaluate the feasibility of sensitive in-beam experiments at LUNA and, by extension, at similar proposed facilities.Comment: accepted, Eur. Phys. J.

    Constraining Non-Standard Interactions of the Neutrino with Borexino

    Full text link
    We use the Borexino 153.6 ton.year data to place constraints on non-standard neutrino-electron interactions, taking into account the uncertainty in the 7Be solar neutrino flux, and backgrounds due to 85Kr and 210Bi beta-decay. We find that the bounds are comparable to existing bounds from all other experiments. Further improvement can be expected in Phase II of Borexino due to the reduction in the 85Kr background.Comment: 21 pages, 16 pdf figures, 2 tables. Analysis updated including the uncertainty in sin^2\theta_{23}. Accepted in JHE
    corecore