2,048 research outputs found
Optimal frequency conversion in the nonlinear stage of modulation instability
We investigate multi-wave mixing associated with the strongly pump depleted
regime of induced modulation instability (MI) in optical fibers. For a complete
transfer of pump power into the sideband modes, we theoretically and
experimentally demonstrate that it is necessary to use a much lower seeding
modulation frequency than the peak MI gain value. Our analysis shows that a
record 95 % of the input pump power is frequency converted into the comb of
sidebands, in good quantitative agreement with analytical predictions based on
the simplest exact breather solution of the nonlinear Schr\"odinger equation
Modulational instability in dispersion-kicked optical fibers
We study, both theoretically and experimentally, modulational instability in
optical fibers that have a longitudinal evolution of their dispersion in the
form of a Dirac delta comb. By means of Floquet theory, we obtain an exact
expression for the position of the gain bands, and we provide simple analytical
estimates of the gain and of the bandwidths of those sidebands. An experimental
validation of those results has been realized in several microstructured fibers
specifically manufactured for that purpose. The dispersion landscape of those
fibers is a comb of Gaussian pulses having widths much shorter than the period,
which therefore approximate the ideal Dirac comb. Experimental spontaneous MI
spectra recorded under quasi continuous wave excitation are in good agreement
with the theory and with numerical simulations based on the generalized
nonlinear Schr\"odinger equation
Nonlinear envelope equation for broadband optical pulses in quadratic media
We derive a nonlinear envelope equation to describe the propagation of
broadband optical pulses in second order nonlinear materials. The equation is
first order in the propagation coordinate and is valid for arbitrarily wide
pulse bandwidth. Our approach goes beyond the usual coupled wave description of
phenomena and provides an accurate modelling of the evolution of
ultra-broadband pulses also when the separation into different coupled
frequency components is not possible or not profitable
Heteroclinic structure of parametric resonance in the nonlinear Schr\"odinger equation
We show that the nonlinear stage of modulational instability induced by
parametric driving in the {\em defocusing} nonlinear Schr\"odinger equation can
be accurately described by combining mode truncation and averaging methods,
valid in the strong driving regime. The resulting integrable oscillator reveals
a complex hidden heteroclinic structure of the instability. A remarkable
consequence, validated by the numerical integration of the original model, is
the existence of breather solutions separating different Fermi-Pasta-Ulam
recurrent regimes. Our theory also shows that optimal parametric amplification
unexpectedly occurs outside the bandwidth of the resonance (or Arnold tongues)
arising from the linearised Floquet analysis
CPAP after endoscopic procedures as add-on therapy for the treatment of tracheal stenosis: a case series
Tracheal stenosis represents a possible complication in intubated or tracheotomised patients. Tracheal resection is currently the gold standard for the treatment of complex stenosis while granulomas and simple stenosis (e.g., web-like) are often treated by endoscopic procedures, which do not consistently give satisfactory long-term results, due to frequent relapses. Administering continuous positive airway pressure (CPAP) after endoscopic procedures might represent a new add-on option for the treatment of this complication. In this case series are presented two patients with tracheal stenosis showed after the removal of tracheostomy tube, both treated with CPAP. The results were straightforward: CPAP treatment helped to keep stable the tracheal lumen, without adverse effects. No further endoscopic dilations were necessary thereafter, with a likely positive impact on patients' quality of life and on health expenditure
Soliton annihilation into a polychromatic dispersive wave
International audienceWe investigate the propagation of a soliton in an axially-varying optical fiber with a progressive change from anomalous to normal dispersion regimes. Spectral and temporal measurements provide evidence for a complete annihilation of the soliton, which explodes into a polychromatic dispersive wave. This interpretation is confirmed by numerical solution of the generalized nonlinear Schrödinger equation
PARISROC, a Photomultiplier Array Integrated Read Out Chip
PARISROC is a complete read out chip, in AMS SiGe 0.35 !m technology, for
photomultipliers array. It allows triggerless acquisition for next generation
neutrino experiments and it belongs to an R&D program funded by the French
national agency for research (ANR) called PMm2: ?Innovative electronics for
photodetectors array used in High Energy Physics and Astroparticles?
(ref.ANR-06-BLAN-0186). The ASIC (Application Specific Integrated Circuit)
integrates 16 independent and auto triggered channels with variable gain and
provides charge and time measurement by a Wilkinson ADC (Analog to Digital
Converter) and a 24-bit Counter. The charge measurement should be performed
from 1 up to 300 photo- electrons (p.e.) with a good linearity. The time
measurement allowed to a coarse time with a 24-bit counter at 10 MHz and a fine
time on a 100ns ramp to achieve a resolution of 1 ns. The ASIC sends out only
the relevant data through network cables to the central data storage. This
paper describes the front-end electronics ASIC called PARISROC.Comment: IEEE Nuclear Science Symposium an Medical Imaging Conference (2009
NSS/MIC
Dynamics of Turing and Faraday instabilities in a longitudinally modulated fiber-ring cavity
International audienceWe experimentally investigate the roundtrip-to-roundtrip dynamics of the modulation instability spectrum in a passive fiber ring cavity presenting an inhomogeneous dispersion profile. By implementing a real-time spectroscopy technique we are able to record successive single-shot spectra, which display the evolution of the system toward a stationary state. We find that the two instability regimes (Turing and Faraday) that compete in this kind of inhomogeneous cavities not only differ by their characteristic frequency but also by their dynamical behaviour. The dynamic transition between those two regimes of instability is also presented
Bouncing of a dispersive wave in a solitonic cage
International audienceWe report the experimental observation of a weak dis-persive wave trapping within a cage formed by two solitons in an optical fiber. We show that the disper-sive wave bouncing is accompanied by a back and forth wavelength conversion of the probe to an idler wave. Besides, we observed the destruction of the soliton cage when dispersive wave power is increased, leading to the collision of the solitons
- …