111 research outputs found

    Reduced graphene oxide-ZnO hybrid composites as photocatalysts: The role of nature of the molecular target in catalytic performance

    Get PDF
    Spurred by controversial literature findings, we enwrapped reduced graphene oxide (rGO) in ZnO hierarchical microstructures (rGO loadings spanning from 0.01 to 2 wt%) using an in situ synthetic procedure. The obtained hybrid composites were carefully characterized, aiming at shining light on the possible role of rGO on the claimed increased performance as photocatalysts. Several characterization tools were exploited to unveil the effect exerted by rGO, including steady state and time resolved photoluminescence, electron microscopies and electrochemical techniques, in order to evaluate the physical, optical and electrical features involved in determining the catalytic degradation of rhodamine B and phenol in water. Several properties of native ZnO structures were found changed upon the rGO enwrapping (including optical absorbance, concentration of native defects in the ZnO matrix and double-layer capacitance), which are all involved in determining the photocatalytic performance of the hybrid composites. The findings discussed in the present work highlight the high complexity of the field of application of graphene-derivatives as supporters of semiconducting metal oxides functionality, which has to be analyzed through a multi-parametric approach

    Nanoscale characterization of an all-oxide core-shell nanorod heterojunction using intermodulation atomic force microscopy (AFM) methods

    Get PDF
    The electrical properties of an all-oxide core-shell ZnO-Co3O4nanorod heterojunction were studied in the dark and under UV-vis illumination. The contact potential difference and current distribution maps were obtained utilizing new methods in dynamic multifrequency atomic force microscopy (AFM) such as electrostatic and conductive intermodulation AFM. Light irradiation modified the electrical properties of the nanorod heterojunction. The new techniques are able to follow the instantaneous local variation of the photocurrent, giving a two-dimensional (2D) map of the current-voltage curves and correlating the electrical and morphological features of the heterostructured core-shell nanorods

    Engineering Cu2O Nanowire Surfaces for Photoelectrochemical Hydrogen Evolution Reaction

    Get PDF
    Cu2O is a narrow band gap material serving as an important candidate for photoelectrochemical hydrogen evolution reaction. However, the main challenge that hinders its practical exploitation is its poor photostability, due to its oxidation into CuO by photoexcited holes. Here, we thoroughly minimize the photo-oxidation of Cu2O nanowires by growing a thin layer of the TiO2 protective layer and an amorphous layer of the VOx cocatalyst using magnetron sputtering and atomic layer deposition, respectively. After optimization of the protective and the cocatalyst layers, the photoelectrode exhibits a current density of -2.46 mA/cm2 under simulated sunlight (100 mW/cm2) at 0.3 V versus reversible hydrogen electrode, and its performance is stable for an extended illumination time. The chemical stability and the good performance of the engineered photoelectrode demonstrate the potential of using earth-abundant materials as a light-harvesting device for solar hydrogen production

    NiMoO4@Co3O4 Core–Shell Nanorods: In Situ Catalyst Reconstruction toward High Efficiency Oxygen Evolution Reaction

    Get PDF
    The sluggish kinetics of the oxygen evolution reaction (OER) is the bottleneck for the practical exploitation of water splitting. Here, the potential of a core–shell structure of hydrous NiMoO4 microrods conformally covered by Co3O4 nanoparticles via atomic layer depositions is demonstrated. In situ Raman and synchrotron-based photoemission spectroscopy analysis confirms the leaching out of Mo facilitates the catalyst reconstruction, and it is one of the centers of active sites responsible for higher catalytic activity. Post OER characterization indicates that the leaching of Mo from the crystal structure, induces the surface of the catalyst to become porous and rougher, hence facilitating the penetration of the electrolyte. The presence of Co3O4 improves the onset potential of the hydrated catalyst due to its higher conductivity, confirmed by the shift in the Fermi level of the heterostructure. In particular NiMoO4@Co3O4 shows a record low overpotential of 120 mV at a current density of 10 mA cm−2, sustaining a remarkable performance operating at a constant current density of 10, 50, and 100 mA cm−2 with negligible decay. Presented outcomes can significantly contribute to the practical use of the water-splitting process, by offering a clear and in-depth understanding of the preparation of a robust and efficient catalyst for water-splitting

    MoS2 Nanosheets Uniformly Anchored on NiMoO4 Nanorods, a Highly Active Hierarchical Nanostructure Catalyst for Oxygen Evolution Reaction and Pseudo-Capacitors

    Get PDF
    Hierarchical nanostructures have attracted considerable research attention due to their applications in the catalysis field. Herein, we design a versatile hierarchical nanostructure composed of NiMoO4 nanorods surrounded by active MoS2 nanosheets on an interconnected nickel foam substrate. The as-prepared nanostructure exhibits excellent oxygen evolution reaction per-formance, producing a current density of 10 mA cm−2 at an overpotential of 90 mV, in comparison with 220 mV necessary to reach a similar current den-sity for NiMoO4. This behavior originates from the structural/morphological properties of the MoS2 nanosheets, which present numerous surface-active sites and allow good contact with the electrolyte. Besides, the structures can effectively store charges, due to their unique branched network providing accessible active surface area, which facilitates intermediates adsorptions. Particularly, NiMoO4/MoS2 shows a charge capacity of 358 mAhg−1 at a current of 0.5 A g−1 (230 mAhg−1 for NiMoO4), thus suggesting promising applications for charge-storing devices

    Solvothermal Synthesis, Gas-Sensing Properties, and Solar Cell-Aided Investigation of TiO2-MoOx Nanocrystals

    Get PDF
    Titania anatase nanocrystals were prepared by sol-gel/solvothermal synthesis in oleic acid at 250 °C, and modified by co-reaction with Mo chloroalkoxide, aimed at investigating the effects on gas-sensing properties induced by tailored nanocrystals surface modification with ultra-thin layers of MoO species. For the lowest Mo concentration, only anatase nanocrystals were obtained, surface modified by a disordered ultra-thin layer of mainly octahedral Mo oxide species. For larger Mo concentrations, early MoO phase segregation occurred. Upon heat treatment up to 500 °C, the sample with the lowest Mo concentration did not feature any Mo oxide phase segregation, and the surface Mo layer was converted to dense octahedral Mo oxide. At larger Mo concentrations all segregated MoO was converted to MoO. The two different materials typologies, depending on the Mo concentration, were used for processing gas-sensing devices and tested toward acetone and carbon monoxide, which gave a greatly enhanced response, for all Mo concentrations, to acetone (two orders of magnitude) and carbon monoxide with respect to pure TiO. For the lowest Mo concentration, dye-sensitized solar cells were also prepared to investigate the influence of anatase surface modification on the electrical transport properties, which showed that the charge transport mainly occurred in the ultra-thin MoO surface layer

    Numerical simulation of the thermal fragmentation process in fullerene C60

    Full text link
    The processes of defect formation and annealing in fullerene C60 at T=(4000-6000)K are studied by the molecular dynamics technique with a tight-binding potential. The cluster lifetime until fragmentation due to the loss of a C2 dimer has been calculated as a function of temperature. The activation energy and the frequency factor in the Arrhenius equation for the fragmentation rate have been found to be Ea = (9.2 +- 0.4) eV and A = (8 +- 1)10^{19} 1/s. It is shown that fragmentation can occur after the C60 cluster loses its spherical shape. This fact must be taken into account in theoretical calculations of Ea.Comment: 12 pages, 3 figure

    Inorganic photocatalytic enhancement : Activated RhB Photodegradation by surface modification of SnO2 Nanocrystals with V2 O5-like species

    Get PDF
    Ajuts: CSIC/CNR project 2010IT0001 (SYNCAMON), SOLAR project DM19447, VINNOVA Marie Curie Incoming Grant under "Light Energy" project.SnO nanocrystals were prepared by precipitation in dodecylamine at 100 °C, then they were reacted with vanadium chloromethoxide in oleic acid at 250 °C. The resulting materials were heat-treated at various temperatures up to 650 °C for thermal stabilization, chemical purification and for studying the overall structural transformations. From the crossed use of various characterization techniques, it emerged that the as-prepared materials were constituted by cassiterite SnO nanocrystals with a surface modified by isolated V(IV) oxide species. After heat-treatment at 400 °C, the SnO nanocrystals were wrapped by layers composed of vanadium oxide (IV-V mixed oxidation state) and carbon residuals. After heating at 500 °C, only SnO cassiterite nanocrystals were obtained, with a mean size of 2.8 nm and wrapped by only V O-like species. The samples heat-treated at 500 °C were tested as RhB photodegradation catalysts. At 10 M concentration, all RhB was degraded within 1 h of reaction, at a much faster rate than all pure SnO materials reported until now

    Nutrient intake during pregnancy and adherence to dietary recommendations: The mediterranean phime cohort

    Get PDF
    Few studies provide a detailed description of dietary habits during pregnancy, despite the central role of nutrition for the health of the mother and offspring. This paper describes the dietary habits, energy and nutrient intake in pregnant women from four countries belonging to the Mediterranean PHIME cohort (Croatia, Greece, Italy and Slovenia) and evaluates their adherence to the European Food Safety Authority (EFSA) recommendations. A total of 1436 women were included in the present analysis. Maternal diet was assessed using a food frequency questionnaire (FFQ). The mean macro and micronutrient intakes were estimated and compared with the dietary reference values (DRVs). The percentage distribution of the 16 food groups in the total intake of each macronutrient was estimated. All women shared a similar diet during pregnancy; almost all the women in the four countries exceeded the DRV for sugars, and the total fat intake was above the DRV in most women in all the countries, as was the contribution of saturated fatty acids (SFAs) to the total energy intake. In all four countries, we observed an increased risk of micronutrient deficiency for iron, folate and vitamin D. Shared guidelines, implemented at both the national and European level, are essential to improve the maternal nutritional status during pregnancy
    • …
    corecore