26 research outputs found

    High Risk of Secondary Infections Following Thrombotic Complications in Patients With COVID-19

    Get PDF
    Background. This study’s primary aim was to evaluate the impact of thrombotic complications on the development of secondary infections. The secondary aim was to compare the etiology of secondary infections in patients with and without thrombotic complications. Methods. This was a cohort study (NCT04318366) of coronavirus disease 2019 (COVID-19) patients hospitalized at IRCCS San Raffaele Hospital between February 25 and June 30, 2020. Incidence rates (IRs) were calculated by univariable Poisson regression as the number of cases per 1000 person-days of follow-up (PDFU) with 95% confidence intervals. The cumulative incidence functions of secondary infections according to thrombotic complications were compared with Gray’s method accounting for competing risk of death. A multivariable Fine-Gray model was applied to assess factors associated with risk of secondary infections. Results. Overall, 109/904 patients had 176 secondary infections (IR, 10.0; 95% CI, 8.8–11.5; per 1000-PDFU). The IRs of secondary infections among patients with or without thrombotic complications were 15.0 (95% CI, 10.7–21.0) and 9.3 (95% CI, 7.9–11.0) per 1000-PDFU, respectively (P = .017). At multivariable analysis, thrombotic complications were associated with the development of secondary infections (subdistribution hazard ratio, 1.788; 95% CI, 1.018–3.140; P = .043). The etiology of secondary infections was similar in patients with and without thrombotic complications. Conclusions. In patients with COVID-19, thrombotic complications were associated with a high risk of secondary infections

    Expression and activity profiling of the steroidogenic enzymes of glucocorticoid biosynthesis and the fdx1 co-factors in zebrafish

    Get PDF
    The spatial and temporal expression of steroidogenic genes in zebrafish has not been fully characterized. Since zebrafish are increasingly employed in endocrine and stress research, a better characterization of steroidogenic pathways is required to target specific steps in the biosynthetic pathways in the future. Here, we have systematically defined the temporal and spatial expression of steroidogenic enzymes involved in glucocorticoid biosynthesis (cyp21a2, cyp11c1, cyp11a1, cyp11a2, cyp17a1, cyp17a2, hsd3b1, hsd3b2), as well as the mitochondrial electron-providing co-factors ferredoxin (fdx1, fdx1b) during zebrafish development. Our studies showed an early expression of all these genes during embryogenesis. In larvae, expression of cyp11a2, cyp11c1, cyp17a2, cyp21a2, hsd3b1 and fdx1b can be detected in the interrenal gland, the zebrafish counterpart of the mammalian adrenal gland, whereas the fdx1 transcript is mainly found in the digestive system. Gene expression studies using quantitative RT-PCR and whole-mount in situ hybridization in the adult zebrafish brain revealed a wide expression of these genes throughout the encephalon, including neurogenic regions. Using ultra-high-performance liquid chromatography tandem mass spectrometry, we were able to demonstrate the presence of the glucocorticoid cortisol in the adult zebrafish brain. Moreover, we demonstrate de novo biosynthesis of cortisol and the neurosteroid THDOC in the adult zebrafish brain from radiolabeled pregnenolone. Taken together, our study is a comprehensive characterization of the steroidogenic genes and the fdx co-factors facilitating glucocorticoid biosynthesis in zebrafish. Furthermore, we provide additional evidence of de novo neurosteroid biosynthesizing in the brain of adult zebrafish facilitated by enzymes involved on glucocorticoid biosynthesis. Our work provides a valuable source for establishing the zebrafish as a translational model to understand the roles of the genes of glucocorticoid biosynthesis and fdx co-factors during embryonic development, stress and in brain homeostasis and function

    Heavy metal behaviour during RDF gasification

    No full text
    Solid wastes, and especially RDF in dealing with the growing presence of organic compounds, mainly plastics, can be considered an important source of energy owing to their inexpensiveness and large availability. However, the presence of heavy metals in the waste can result in a recycling problem when thermal treatment is involved. In fact, small amounts of these metal species can be found in the gaseous stream, and this is particularly true for gasification processes. This work investigates the possibility of using theoretical calculations to evaluate the amount of volatile metal species in the gas stream, obtained by a gasification process, in order to select the adequate gas cleaning facilities. To this aim, the chemistry and volatility of the heavy metals As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Sn and Zn, commonly present in RDF, were investigated both theoretically and experimentally at different gasification conditions. A theoretical approach at equilibrium conditions based on thermodynamic data was performed by means of the total Gibbs free energy minimization method. The equilibrium distribution of the trace element species formed under reducing conditions in the 700-1300 K temperature range was calculated. The theoretical results are in substantial accordance with experimental data obtained using a bench scale gasification reactor. This study demonstrates that is possible to predict with reasonable conditions the operating conditions of a RDF gasifyier in order to obtain a syngas with a controlled content of polluting compounds

    ΔNp63-Senataxin circuit controls keratinocyte differentiation by promoting the transcriptional termination of epidermal genes

    No full text
    SignificanceΔNp63 is a master regulator of skin homeostasis since it finely controls keratinocyte differentiation and proliferation. Here, we provide cellular and molecular evidence demonstrating the functional role of a ΔNp63 interactor, the R-loop-resolving enzyme Senataxin (SETX), in fine-tuning keratinocyte differentiation. We found that SETX physically binds the p63 DNA-binding motif present in two early epidermal differentiation genes, Keratin 1 (KRT1) and ZNF750, facilitating R-loop removal over their 3' ends and thus allowing efficient transcriptional termination and gene expression. These molecular events translate into the inability of SETX-depleted keratinocytes to undergo the correct epidermal differentiation program. Remarkably, SETX is dysregulated in cutaneous squamous cell carcinoma, suggesting its potential involvement in the pathogenesis of skin disorders
    corecore