80 research outputs found

    Brief Communication: A new testing field for debris flow warning systems

    Get PDF
    Abstract. A permanent field installation for the systematic test of debris flow warning systems and algorithms has been equipped on the eastern Italian Alps. The installation was also designed to produce didactic videos and it may host informative visits. The populace education is essential and should be envisaged in planning any research on hazard mitigation interventions: this new installation responds to this requirement and offers an example of integration between technical and informative needs. The occurrence of a debris flow in 2014 allowed the first tests of a new warning system under development and to record an informative video on its performances. This paper will provide a description of the installation and an account of the first technical and informative results obtained

    How do geomorphic characteristics affect the source of tree water uptake in restored river floodplains?

    Full text link
    Alpine rivers and their floodplains have been highly modified by human activities during the last decades. River restoration projects aim to counteract these negative impacts and to restore ecosystem services provided by riparian habitats. We studied two recently restored river sites in the Ahr/Aurino and Mareit/Mareta Rivers (Italian Alps) to investigate how geomorphic conditions, soil moisture, and groundwater level affect the source of water used by grey alder (Alnus incana (L.) Moench). We compared the isotopic composition (ή2H) of tree sap at different locations (low terraces formed during bed incision and recent floodplains formed after restoration) with that of potential water sources, that is, groundwater, soil water, and rainfall. The monthly variation in the isotopic composition of rainfall was reflected in both shallow and deeper soil water, as well as in the isotopic composition of sap. The redistribution of precipitation and groundwater in the soil differed between the post-restoration floodplain sites and the post-incision terraces, leading to a different relation between the sap water, soil water, and groundwater isotopic composition. The results show that transpiration of A. incana trees growing on recent floodplains is mostly supported by stream-fed soil water, whereas trees growing on terraces mainly use precipitation-fed soil water. These marked, morphology-related differences in the source of transpiration water of grey alder highlight how channel degradation still affects the ecohydrological processes in Alpine fluvial corridors. Nonetheless, large restoration interventions—in terms of channel widening—can enable the self-formation of new floodplain areas characterized by stream water-fed riparian ecosystems

    Limited effect of the confluence angle and tributary gradient on Alpine confluence morphodynamics under intense sediment loads

    Get PDF
    Confluences are dynamic morphological nodes that are found in all river networks. In mountain regions, they are influenced by hydraulic and sedimentary processes that occur in steep channels during extreme events in small watersheds. Sediment transport in the tributary channel and aggradation in the confluence can be massive, potentially causing overbank flooding and sedimentation into adjacent settlement areas. Previous works dealing with confluences have mainly focused on lowland regions, and those that have focused on mountain areas have used sediment concentrations and channel gradients that are largely under-representative of mountain river conditions. The presented work contributes to filling this research gap with 45 experiments that use a large-scale physical model. Geometric model parameters, the applied grain size distribution, and the considered discharges represent the conditions at 135 confluences in South Tyrol (Italy) and Tyrol (Austria). The experimental program allowed for a comprehensive analysis of the effects of (i) the confluence angle, (ii) the tributary gradient, (iii) the channel discharges, and (iv) the tributary sediment concentration. In contrast to most research dealing with confluences, results indicate that, in the presence of an intense tributary sediment supply and a small tributary-to-main-channel discharge ratio (0.1), the confluence angle does not have a decisive effect on confluence morphology. Adjustments to the tributary channel gradient yielded the same results. A reoccurring range of depositional geomorphic units was observed in which a deposition cone transitioned to a bank-attached bar. The confluence morphology and tributary channel gradient rapidly adjusted, tending towards an equilibrium state to accommodate both water discharges and the sediment load from the tributary. Statistical analyses demonstrated that the confluence morphology was controlled by the combined channel discharge and the depositional or erosional extent was controlled by the sediment concentration. Applying conclusions drawn from lowland confluence dynamics could misrepresent depositional and erosional patterns and the related flood hazard at mountain river confluences.</p

    The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation

    Get PDF
    The effect of pore-scale heterogeneity on non-Darcy flow behaviour is investigated by means of direct flow simulations on 3-D images of a beadpack, Bentheimer sandstone and Estaillades carbonate. The critical Reynolds number indicating the cessation of the creeping Darcy flow regime in Estaillades carbonate is two orders of magnitude smaller than in Bentheimer sandstone, and is three orders of magnitude smaller than in the beadpack. It is inferred from the examination of flow field features that the emergence of steady eddies in pore space of Estaillades at elevated fluid velocities accounts for the early transition away from the Darcy flow regime. The non-Darcy coefficient ÎČ, the onset of non-Darcy flow, and the Darcy permeability for all samples are obtained and compared to available experimental data demonstrating the predictive capability of our approach. X-ray imaging along with direct pore-scale simulation of flow provides a viable alternative to experiments and empirical correlations for predicting non-Darcy flow parameters such as the ÎČ factor, and the onset of non-Darcy flow

    Medium-term fluvial island evolution in a disturbed gravel-bed river (Piave River, Northeastern Italian Alps)

    Get PDF
    River islands are defined as discrete areas of woodland vegetation surrounded by either water-filled channels or exposed gravel. They exhibit some stability and are not submerged during bank-full flows. The aim of the study is to analyze the dynamics of established, building, and pioneer islands in a 30-km-long reach of the gravel-bed Piave River, which has suffered from intense and multiple human impacts. Plan-form changes of river features since 1960 were analyzed using aerial photographs, and a LiDAR was used to derive the maximum, minimum and mean elevation of island surfaces, and maximum and mean height of their vegetation. The results suggest that established islands lie at a higher elevation than building and pioneer islands, and have a thicker layer of fine sediments deposited on their surface after big floods. After the exceptional flood in 1966 (RI>200 years) there was a moderate increase in island numbers and extension, followed by a further increase from 1991, due to a succession of flood events in 1993 and 2002 with RI>10 years, as well as a change in the human management relating to the control of gravel-mining activities. The narrowing trend (1960-1999) of the morphological plan form certainly enhanced the chance of islands becoming established and this explains the reduction of the active channel, the increase in established islands and reduction of pioneer islands

    Gastronomy, football, and resistance : the multi-faceted visibility of Corsican in the linguistic landscape

    Get PDF
    This chapter discusses a variety of settings in which the Corsican language is visible in the contemporary Corsican linguistic landscape. Examples are drawn from an empirical corpus of 5638 signs, sampled on 20 prominent streets in each of Ajaccio and Bastia, the island’s largest towns. Quantitative assessments reveal contextual, authorial, and material trends in Corsican sign-writing, whilst qualitative analyses inform detailed discussions of the language in the fields of gastronomy, support for the cities’ rival football clubs, and resistance to national identity through texts linked to the independence movement. Whilst regional languages in France are frequently associated with minorities, tradition, and the past, the data discussed in this chapter demonstrate the widespread visibility of Corsican, and its use in multiple aspects of contemporary life

    The current state of the use of large wood in river restoration and management

    Get PDF
    Trees fall naturally into rivers generating flow heterogeneity, inducing geomorphological features, and creating habitats for biota. Wood is increasingly used in restoration projects and the potential of wood acting as leaky barriers to deliver natural flood management by “slowing the flow” is recognised. However, wood in rivers can pose a risk to infrastructure and locally increase flood hazards. The aim of this paper is to provide an up-to-date summary of the benefits and risks associated with using wood to promote geomorphological processes to restore and manage rivers. This summary was developed through a workshop that brought together academics, river managers, restoration practitioners and consultants in the UK to share science and best-practice on wood in rivers. A consensus was developed on four key issues: (i) hydro-geomorphological effects, (ii) current use in restoration and management, (iii) uncertainties and risks, and (iv) tools and guidance required to inform process-based restoration and management
    • 

    corecore