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a b s t r a c t 

The effect of pore-scale heterogeneity on non-Darcy flow behaviour is investigated by means of direct flow 

simulations on 3-D images of a beadpack, Bentheimer sandstone and Estaillades carbonate. The critical 

Reynolds number indicating the cessation of the creeping Darcy flow regime in Estaillades carbonate is two 

orders of magnitude smaller than in Bentheimer sandstone, and is three orders of magnitude smaller than in 

the beadpack. It is inferred from the examination of flow field features that the emergence of steady eddies 

in pore space of Estaillades at elevated fluid velocities accounts for the early transition away from the Darcy 

flow regime. The non-Darcy coefficient β , the onset of non-Darcy flow, and the Darcy permeability for all 

samples are obtained and compared to available experimental data demonstrating the predictive capability 

of our approach. X-ray imaging along with direct pore-scale simulation of flow provides a viable alternative 

to experiments and empirical correlations for predicting non-Darcy flow parameters such as the β factor, and 

the onset of non-Darcy flow. 

© 2015 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

In the creeping flow regime in porous media, the relation between

ressure p and the volumetric velocity vector U = 

q 
A 
, where q is the

olume flowing per unit time and A is the cross-sectional area of the

amples sliced perpendicular to the flow direction, is described by

he linear Darcy equation: 

∇p = 

μ

K D 

U , (1) 

here μ is the dynamic viscosity of the fluid and K D is the Darcy

ermeability tensor. Such linearity is a direct consequence of Stokes

ow where the non-linear inertial term is neglected. 

As the flow rate increases, Eq. (1) no longer holds; the relation be-

ween p and U becomes non-linear due to emerging inertial effects

nd the flow enters the non-Darcy regime. A quadratic term was in-

luded by Dupuit [1] and Forchheimer [2] as a correction to the Darcy

quation to give what is known as the Forchheimer equation: 

∇p = 

μ

K F 

U + βρ| U | 2 n , (2)

here n is a unit vector in the direction of ∇p . K F is the Forchheimer

ermeability tensor which is close to but not equal to K , and ρ is the
D 
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ensity of the fluid. The additional term in the Forchheimer equation

2) is proportional to the non-Darcy coefficient β . 

The onset of non-Darcy flow and the β coefficient in porous media

re generally determined by multi-rate pressure test results. These

esults have been used to develop empirical correlations to predict

he β factor [3–7] ; yet, given the heterogeneous nature of most reser-

oir rocks, it is expected that these correlations yield uncertain pre-

ictions for samples where direct experimental data is unavailable

8,9] . 

Numerical simulations are intended to circumvent this problem

nd provide a microscopic insight into pore-scale flow phenomena

y solving the fluid equations directly within the pore spaces of rocks.

owever, the complexity of the pore geometry and the need to com-

ute flow accurately over a representative element of volume has

itherto limited the application of this approach. Several numerical

tudies on simplified media and sphere packs have been reported.

ourar et al. [10] used a commercial finite-element method (Fem-

ab) to simulate and predict the onset of non-Darcy flow of Newto-

ian fluid through 2-D and 3-D periodic sphere packs. Newman and

in [11] applied the lattice Boltzmann method to predict the onset

f non-Darcy flow and the dimensionless inertial resistance factor√ 

K D , for synthetic 2-D media. They showed that a large contrast

etween pore and throat size is responsible for an early transition

o the inertial regime. Thauvin and Mohanty [12] developed a pore-

evel network model to describe high velocity flow. They input pore
r the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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(a) (b) (c)

Fig. 1. 2-D cross sections of 3-D grey-scale images of (a) beadpack, (b) Bentheimer, and (c) Estaillades with resolutions of 2 μm , 3 . 0035 μm , and 3 . 3113 μm respectively. 
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size distributions and network coordination numbers into the model,

and output permeability, β , tortuosity, and porosity. 

In the works of Bijeljic et al. [13,14] the correlation between

pore heterogeneity and flow heterogeneity such as probability of

molecular displacement and probability density function (PDF) of

velocity was elucidated for a range of samples of carbonates and

sandstones including Bentheimer and Estaillades. Likewise, in [15,16] ,

Siena et al. and Hyman et al. had attempted to quantify the hetero-

geneity in the flow and related it to the heterogeneity of pore struc-

tures. In this paper, we aim to demonstrate the effect of pore hetero-

geneities on the onset of non-Darcy flow. Such onset can be identified

by the deviation of apparent permeabilities from Darcy permeability,

marked by the increase of tortuosity at elevated flow velocities. 

In recent years, several studies have been conducted on realistic

3-D images. For instance, Sukop et al. [17] simulated 3-D flows in bio-

genic vuggy macropore representing subsamples of a karstic Biscayne

aquifer with up to 81% macro-porosity to compute the β factor. Their

simulations were performed in grids containing 336 × 336 × 336

voxels. Chukwudozie et al. [18] used the lattice Boltzmann method to

predict β , permeability and tortuosity of Castlegate sandstone with

0 . 15 –0 . 18 mm grains and 18% porosity imaged at 7.57 mm resolu-

tion using a 3-D image of 300 × 300 × 300 voxels. They compared

the computed β factor to experimental data and found a good agree-

ment. However, none of the numerical works above has addressed

and demonstrated the effect of pore-scale heterogeneity on the onset

of non-Darcy flow and β factor in the range of natural porous media. 

In this paper we employ a finite-volume method for simulating

fluid flows directly on 3-D images of three porous media with vari-

ous pore complexity and heterogeneity i.e. a bead (sphere) pack, Ben-

theimer sandstone and Estaillades carbonate. By conducting the sim-

ulations directly in the pore-space images, we are able to examine

the key features of the flow fields within these samples as they tran-

sition into the non-Darcy regime. The results enable us to better un-

derstand the underlying physics of, and the effect of heterogeneities

on, the onset of non-Darcy flow. 

In the next sections, the physical properties of the samples used

in this paper are presented. We then explain the definition of the on-

set of non-Darcy flow and the Reynolds number used to indicate the

cessation of the Darcy flow regime. The results of our numerical sim-

ulations are given, discussed and compared to available experimental

data. 

2. Theoretical background and methodology 

2.1. Images and physical properties of the samples 

The non-Darcy flows are simulated in pore-space images of three

porous media with increasing pore-scale heterogeneity namely: (1)

beadpack, (2) Bentheimer sandstone, and (3) Estaillades carbonate.

The beadpack image is based on the measurements of the coordi-
ates of the centres of equally-sized spherical grains in a random

lose packing (see Finney [19] ) for which the segmentation into an

mage has been performed by Prodanovi ́c and Bryant [20] . 

Guadagnini et al. [21] have analysed the statistical scaling of

tructural attributes of similar Estaillades limestone and Bentheimer

andstone images to those analyzed here. In their study, directional

istributions of porosity and specific surface area, which are key

inkowski functionals (geometric observables, see [22] ) were em-

loyed to describe the pore-space structure. They found that Estail-

ades displayed characteristics of a more heterogeneous pore space

han Bentheimer. The same conclusion was reached by Bijeljic et al.

13,14] who studied the distribution of local flow speeds in the pore

pace. 

The dry-scan images of Bentheimer sandstone [13] and Estail-

ades carbonate [14] were acquired on a cylindrical core of 5 mm

iameter and 25 mm length with an Xradia Versa micro-CT scan-

er. Bentheimer sandstone image was provided by iRock Technolo-

ies, while Estaillades carbonate was acquired in-house. After using

 non-local means edge preserving filter (see Buades et al. [23,24] )

o reduce noise, the segmentation into binary images was performed

sing a seeded watershed algorithm based on the three-dimensional

radient magnitude and grey-scale value of each voxel [25] . All im-

ge processing was conducted using the Avizo Fire 7.0 program (VSG;

ttp://www.vsg3d.com) . In Fig. 1 , 2-D cross sections of the 3-D grey-

cale images of the beadpack, Bentheimer sandstone and Estaillades

arbonates are shown. 3-D voxelised pore spaces of these samples

hrough which the flows are simulated are then generated based on

hese images. 

The resolution of the images, porosity φ, characteristic length L of

he samples, the total number of voxels and number of pore voxels

re all given in Table 1 . Note that for unconsolidated porous media

uch as a beadpack, the diameter of the bead D bead = 100 μm is cho-

en as the characteristic length L . For Bentheimer and Estaillades, the

haracteristic lengths are estimated as L ≈ π
S v 

, S v is the specific sur-

ace area of the pore–grain interface (surface area divided by the total

olume − pore plus grain) [26] . The area S v is measured directly on

he image from the number of voxel faces separating void from grain.

his method is employed for consolidated media where it is not pos-

ible to extract an unambiguous mean grain size. 

.2. Governing equation and numerical method 

Flow through the pore spaces of porous media is governed by the

ncompressible Navier–Stokes equation formulated as: (
∂u 

∂t 
+ u · ∇u 

)
= −∇ p + μ∇ 

2 u , 

∇ · u = 0 , 

u = 0 , on grain boundaries. (3)

http://www.vsg3d.com\051
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Table 1 

Description of the images of beadpack, Bentheimer and Estaillades. For the beadpack, the particle 

diameter D bead = 100 μm is taken as the characteristic length L . For Bentheimer and Estaillades, L is 

estimated and defined in Section 2.1 . 

Sample Resolution ( μm ) Porosity, φ L ( μm ) Total voxels Pore voxels 

Beadpack 2 .0 0 .359 100 300 × 300 × 300 9,700,082 

Bentheimer 3 .0035 0 .211 139 .9 500 × 500 × 500 26,413,875 

Estaillades 3 .3113 0 .108 253 .2 500 × 500 × 500 13,522,500 

(a) (b) (c)

Fig. 2. Voxelised pore spaces of (a) beadpack, (b) Bentheimer, and (c) Estaillades through which the flows are simulated. 
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ere u is the velocity vector, and p is pressure. We are interested in

he steady-state solution of Eq. (4) i.e., ∂u 
∂t 

= 0 . 

Pressure and velocity in Eqs. (4) are solved directly on voxelised

ore spaces of the beadpack, Bentheimer and Estaillades as illus-

rated in Fig. 2 , using the pressure implicit with splitting operators

PISO) algorithm by Issa [27] . The numerical solver used in this pa-

er is built upon OpenFOAM, the open source CFD toolbox for solv-

ng Navier–Stokes equations, as described in [13,28] . Our criterion

or steady state convergence is ε ≤ 10 −6 where ε = 

‖ u n −u n −1 ‖ 
‖ u n ‖ and

 · ‖ = 

√ ∑ 

i (·) 2 i 
. { u } n 

i 
is the discretised magnitude of velocity at the

entre of voxel i = { 1 , . . . , N vox } at time level n where N vox is the to-

al number of pore voxels. The time difference operator ∂ ( . . . ) /∂ t is
olved with an implicit, first order accurate Euler scheme. The first

rder accuracy in time is deemed sufficient given that we are inter-

sted only in the steady state solution [29,30] . The divergence op-

rator ∇ · ( . . . ) is discretised with a Gauss scheme and interpolated

sing a second order accurate self-filtered central difference scheme,

ee [31,32] . 

In all simulations, the boundary condition at the pore-solid in-

erface is set to be a no-slip (zero normal and tangential velocity)

oundary condition. A constant pressure boundary condition at the

nlet and the outlet faces of the images is used, whereas no-slip

oundary conditions are applied on the remaining faces. Water is

et as the working fluid with viscosity μ = 0 . 001 kg / m s and den-

ity ρ = 10 0 0 kg / m 

3 . An Intel Xeon E5-2695 2.40 GHz 30 MB cache

s used. Each simulation is run in parallel on 16 nodes. The flow com-

utation for the 50 0 × 50 0 × 50 0 cell Estaillades model, the most

ifficult case, at Re K = 3 . 17 × 10 −7 requires 3 h 37 min of computer

ime. The definition of Re K is given in Section 2.4 . 

.3. Permeability 

The components of second rank tensor K = K i j , where i, j =
 , 2 , 3 can be acquired by employing Darcy law 

 i j = 

μ

�p j 
U i , (4) 

here �p j is the pressure gradient in the j th direction, and U i is the

 th component of U which can be obtained from 
 i = 

1 

	

∫ 
	

u i d	, (5) 

here 	 is the volume of the pore space [33] . 

In this paper, we compute only permeabilities of the porous media

ontributing to flows in the direction of applied pressure gradients;

ence for simplicity, from here-on we denote volumetric velocity as

 and permeability simply as K . At the millimetre scale these samples

ave an approximately isotropic permeability [26] . 

.4. Criteria for non-Darcy flow and the β factor 

There has been a debate regarding whether or not there is a crit-

cal Reynolds number above which the Darcy flow regime ceases to

pply [6] . As pointed out by Chhabra [34] in his work on single-phase

on-Newtonian fluid flow in porous media and packed beds, there is

o clear-cut definition of critical Reynolds number indicating the end

f the Darcy flow regime. Comiti et al. [35] , however, proposed two

imits namely: (1) For engineering purposes, the end of the creeping

ow regime to be defined as the moment when the pressure drop

ue to the linear term becomes less than 95% of the total; (2) A more

tringent limit when the pressure drop due to the linear term be-

omes less than 99%. In this paper, the latter limit is used, after which

he Forchheimer regime is assumed. 

In regards to the prediction of the onset of non-Darcy flow, several

uthors have proposed different definitions of Reynolds number [36] .

e use two formulations of Reynolds number; the first is the stan-

ard definition of Reynolds number based on characteristic length L

.e., 

e L = 

ρUL 

μ
. (6) 

he second formulation is 

e K = 

ρU 

√ 

K D 

μ
, (7) 

here 
√ 

K D is referred to as the Brinkman screening length [37] . 
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(a) (b)

(c)

Fig. 3. Computations of pressure gradient for (a) the beadpack, (b) Bentheimer, and (c) Estaillades as they diverge from the Darcy linear relationship with velocity at higher 

velocities. The symbol represents the observed pressure gradient whereas the black line represents the gradient assuming a linear dependence as μU 
K D 

; both as functions of the 

Darcy or volumetric velocity U . The red dashed lines indicate the onset of the non-Darcy regime where the pressure gradient due to linear term becomes less than 99% of the total. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Darcy flow parameters for the beadpack, Bentheimer and Estaillades cal- 

culated at low velocities. 

Sample Re K Pressure gradient ( MPa / m ) K D ( D ) 

Beadpack 2 . 2 × 10 −5 16 . 67 × 10 −4 5.650 

Bentheimer 4 . 4 × 10 −6 6 . 04 × 10 −4 3.547 

Estaillades 4 . 3 × 10 −8 6 . 65 × 10 −4 0.172 

p

K  

w  

f  

S  

[  

y  

T

3

 

l  

o

 

g  

D  

R  

p

We define the dimensionless apparent permeability K 

∗ formu-

lated as: 

K 

∗ = 

K app 

K D 

(8)

to highlight the transition from Darcy to non-Darcy flows. The appar-

ent permeability K app is formulated as 

1 

K app 
= 

1 

K F 

+ β
ρU 

μ
. (9)

By substituting Eq. (8) into Eq. (1) , and considering the criterion

for the onset of non-Darcy flow defined earlier, it can be inferred

that the onset of non-Darcy flow, which will be used throughout

this paper, is the point when K 

∗ = 0 . 99 . The beta factor β is de-

duced from the slope of the Forchheimer graph i.e., by plotting the

inverse of apparent permeability 1 
K app 

against ρU 
μ in the Forchheimer

regime. 

3. Numerical results and discussion 

To investigate non-Darcy flow behaviour, we performed simula-

tions of flows with different pressure gradients through the pore

spaces of the beadpack, Bentheimer and Estaillades. The flow rates

were varied such that they encompass flow regimes from Darcy to

Forchheimer. 

3.1. Darcy permeability and model comparison 

At low velocity i.e., Re K � 1, the Darcy permeabilities were cal-

culated, see Table 2 . The Darcy permeability of the beadpack can be
redicted using the Kozeny–Carman equation 

 Kozeny –Carman = 

φ3 

S v 
2 K (1 − φ) 

2 
, (10)

here K is the Kozeny–Carman constant and S v is the specific sur-

ace area. When the porous medium consists of spherical particles,

 v = 

6 
D p 

where D p is the particle diameter. K = 5 applies for spheres

47] . The beadpack permeability approximation according to this

ields K Kozeny –Carman = 6 . 255 D which is similar to our result, 5.650 D ,

able 2 . 

.2. Onset of non-Darcy flow 

In Fig. 3 , plots of pressure gradient as a function of volumetric ve-

ocity U are given showing nonlinear behaviour at high velocities; the

nset of non-Darcy regime is also indicated. 

In Fig. 4 (a) the dimensionless permeabilities K 

∗ for all samples are

iven as functions of Re K depicting the transition from Darcy to non-

arcy flow. In Fig. 4 (b) K 

∗ is plotted as a function of Re L . The critical

e K and Re L indicating the departure from Darcy flow for the bead-

ack, Bentheimer and Estaillades are shown in Table 3 . Given that Re 
K 
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(a) (b)

Fig. 4. The dimensionless permeability K ∗ as a function of (a) Re K and (b) Re L depicting the transition from the Darcy to non-Darcy flow regimes for Estaillades ( ), Bentheimer 

( ), and the beadpack ( ). 

Table 3 

Predicted onsets of non-Darcy flow for the 

beadpack, Bentheimer and Estaillades. 

Sample Onset of non-Darcy flow 

Re K Re L 

Beadpack 6 . 64 × 10 −2 2 .79 

Bentheimer 2 . 64 × 10 −3 0 .196 

Estaillades 9 . 4 × 10 −5 0 .0226 
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e  
s defined based on the Darcy permeabilities whereas Re L on charac-

eristic length, which is ambiguous for Bentheimer and Estaillades,

e K can be viewed as the more physically consistent criterion for the

nset of non-Darcy flow. From Table 3 , it can be seen that the critical

eynolds number Re K indicating the cessation of the Darcy regime

or Estaillades is two orders of magnitude smaller than that for Ben-

heimer and is more than three orders of magnitude smaller than that

or the beadpack. 

In Table 4 , the reported onsets of non-Darcy flow in several sys-

ems by several authors are given and compared to our computed

nsets for the beadpack, Bentheimer and Estaillades. Apart from Er-

un’s formulation of Reynolds number which includes porosity φ,

ther authors formulated the Reynolds number as Re = 

ρD p U 
μ which
Table 4 

The onsets of non-Darcy flow as reported by several so

the point when K ∗ = 0 . 99 ) using the source’s own defi

Source Criterion Reported 

Re onset 

Chilton 
ρD p U 

μ
40–80 

and Colburn [3] (packed particles
ρD p U 

μ
10–10 0 0 

Fancher (packed particles

and Lewis [4] 0.4–3 

(sandstones) 

Ergun [38] 
ρD p U 

μ(1 − φ) 
3–10 

(packed particles

Bear [6] 
ρD p U 

μ
3–10 

(packed particles

Scheidegger [39] 
ρD p U 

μ
0.1–75 

(packed particles

Hassanizadeh 
ρD p U 

μ
1–15 

and Gray [7] (packed particles
s our definition of Re L . For the beadpack, our computations agree

ell with the estimations of Ergun [38] , Scheiddeger [39] and Has-

anizadeh and Gray [7] and deviate by less than one order of magni-

ude from the correlations of Fancher and Lewis [4] and Bear [6] . This

hows that our numerically estimated onset of non-Darcy flow agrees

ell with experimental data conducted on similar systems. Fancher

nd Lewis [4] found that the onset for sandstone is between one to

hree orders of magnitude smaller than the onset for packed parti-

les; we see a difference of approximately 25. Our predicted onset of

on-Darcy flow for Estaillades does not fall within any of the pub-

ished empirical results. However, none of the experiments was per-

ormed on carbonates with a complex pore structure. Our simulations

ndicate a much earlier onset of non-linear behaviour in samples with

 tortuous pore structure. 

.3. Flow patterns and analysis 

Several authors [5,12,42,44,45,48] have emphasised the effect of

ortuosity on β factor. Although there has been no clear consensus

n its definition, tortuosity has been generally defined as an average

longation of fluid paths within a porous medium. In practice tortu-

sity is difficult to obtain for complex geometries both experimen-

ally and numerically. In the works of Duda et al. [49] and Koponen

t al. [50] , a method for computing tortuosity from the fluid velocity
urces compared to our predictions (acquired at 

nitions of Reynolds number. 

Our predicted onset for: 

Beadpack Bentheimer Estaillades 

2.79 0.196 0.0226 

) 

2.79 0.196 0.0226 

) 

4.35 0.248 0.0253 

) 

2.79 0.196 0.0226 

) 

2.79 0.196 0.0226 

) 

2.79 0.196 0.0226 

) 
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(a) (b)

(c)

Fig. 5. Plots of tortuosities and apparent permeabilities K app as functions of Re L for (a) the beadpack, (b) Bentheimer, and (c) Estaillades. The symbol denotes K app while the 

symbol denotes tortuosity. 
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field is proposed i.e., 

T = 

〈 u 〉 
〈 u x 〉 ≥ 1 (11)

where 〈 u 〉 is the average magnitude of the intrinsic velocity over the

entire system volume and 〈 u x 〉 is the volumetric average of its compo-

nent along the macroscopic flow direction. This method enables one

to calculate tortuosity directly from the fluid velocity field, without

the need to determine flowpaths. 

Tortuosities and apparent permeabilities K app for the three sam-

ples were computed and are plotted as functions of Re L in Fig. 5 . For

Bentheimer and Estaillades, tortuosities show a monotonically in-

creasing trend. For the beadpack, the tortuosity fluctuates slightly

prior to increasing. This phenomenon has also been reported by

Chukwudozie [51] in which the lattice Boltzmann method was em-

ployed to simulate non-Darcy flow through a body centred cubic

sphere pack. 

We can explain our results through studying the interstitial flow

patterns in the different rock types and for different flow speeds. In

Fig. 6 , the flow streamlines 1 through the pore space of Estaillades

at Re K = 3 . 17 × 10 −7 , Re K = 3 . 154 × 10 −5 and Re K = 3 . 275 × 10 −4 are

shown. These points represent flows at the Darcy stage ( K 

∗ = 1 ), early

transition stage ( K 

∗ = 0 . 995 ) and in the Forchheimer flow regime

( K 

∗ = 0 . 94 ). In Fig. 6 (a) the streamlines remain parallel to one an-

other and their curvatures follow the form of the pores. In Fig. 6 (b)

steady eddies, where the streamlines move in closed circles, appear

at some pores (circled). The emergence of these eddies coincides with
1 Note that streamlines in a steady state flow are also pathlines. The streamlines can 

be computed from the velocity vector in every pore voxel; these were computed and 

plotted using ParaView [52] . 

a  
 decrease of permeability and an increase of tortuosity. In Fig. 6 (c)

ore steady eddies emerge in some pores and subsequently reduce

he effective area available for flow. 

In Fig. 7 , the flow streamlines in Bentheimer at Re K = 4 . 45 × 10 −6 ,

nd Re K = 8 . 65 × 10 −3 are shown, while Fig. 8 illustrates the stream-

ines through the beadpack at Re K = 2 . 23 × 10 −3 , and Re K = 2 . 06 ×
0 −1 . Unlike Estaillades, no eddies emerge within the pore spaces of

entheimer or the beadpack even in the Forchheimer regime. Fourar

t al. [10] pointed out that steady eddies are more likely to occur in

orous media in which the grains touch and the flow pathways be-

ome more tortuous; for Estaillades we have the sample with the

owest porosity (most cemented pore space) and the largest tortu-

sity, see Fig. 5 . 

For the beadpack, Fig. 8 (b), we see a very different behaviour, at

uch higher flow rates, during the Forchheimer regime. Flow appears

o become focused in a straight high-speed zone, which is called an

nertial core in [53] . In this more homogeneous system the changes

n the flow paths are qualitatively different, with no eddies but rather

n apparent concentration of fast flow. 

In Fig. 9 , we plot the velocity field in a centre plane of z - axis in the

eadpack and compare it with the vector field of a beadpack acquired

rom a particle image velocimetry (PIV) measurement by Patil and

iburdy [40] . Their experiments were conducted on low aspect ratio

orous beds (bed width-to-bead diameter) of 4.67 whereas our com-

utational domain has an aspect ratio of 6. In their experiment, a pore

eynolds number, Re pore = 3 . 77 was chosen 

2 and we compare it with

ur simulation at Re pore = 3 . 85 (equivalent to Re K = 0 . 088 ) which is

lready in the transition to Forchheimer regime with K 

∗ = 0 . 983 . As
2 Patil and Liburdy [40] used the definition of pore Reynolds number Re pore = 

ρUD p 
μ

2 
3 

1 
(1 −φ) 

. 
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(a) (b)

(c)

Fig. 6. Plots of flow streamlines within Estaillades pores (grey) at selected locations during (a) the Darcy regime ( Re K = 3 . 17 × 10 −7 ), (b) the transition regime ( Re K = 3 . 154 × 10 −5 ), 

and (c) the Forchheimer regime ( Re K = 3 . 275 × 10 −4 ). The streamlines are coloured according to the ratios of the magnitude of velocity | u | at voxel centres to the average velocity 

| u | av spanning from 0 to 400. The red circles indicate steady eddies the number and intensity of which increase markedly in the Forchheimer regime. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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an be seen in the figures, both velocity fields show qualitatively no

dentifiable inertial structures formed such as flow separation nor re-

irculation regions. Several high velocity regions are seen, as a con-

equence of the three-dimensional flow geometry giving rapid flow

nto large pore spaces. While the results are not identical, since we

tudy slightly different porous media, the overall features of the flow

re similar, indicating that we correctly capture the key features of

he flow field. 

The turbulent flow regime is excluded in our simulations where

he flow field varies in time, even in a steady-state regime;

his regime has been considered using PIV measurements by

54,55] . 

.4. β factor and model comparison 

In Fig. 10 , the inverse of apparent permeability 1 
K app 

is plotted as

 function of ρU 
μ . The β factors for the beadpack, Bentheimer and

staillades are obtained from the slopes of these functions and are

.57 × 10 5 m 

−1 , 2.07 × 10 6 m 

−1 and 6.15 × 10 8 m 

−1 for the bead-

ack, Bentheimer and Estaillades respectively. 
Ergun [38] derived an empirical equation for approximating the β
actor from an analysis of data from 640 experiments: 

Ergun = 

14 . 2887 

K D 
0 . 5 φ1 . 5 

; (12) 

sing SI units for β and K D . For our beadpack sample ( K D from Table 2

s used while the porosity φ can be found in Table 1 ) βErgun = 2 . 795 ×
0 5 m 

−1 . This agrees well with our numerical estimation of β factor

or beadpack, 2.57 × 10 5 m 

−1 . 

Li and Engler [56] reviewed several empirical correlations for esti-

ating β factor. We estimate the β factors for Bentheimer and Estail-

ades (the porosity φ can be found in Table 1 with the Darcy perme-

bility K D in Table 2 ). The tortuosities of the beadpack, Bentheimer

nd Estaillades are 1.26, 1.52 and 1.91 respectively. The estimated

factors in Table 5 vary between 0.36 × 10 6 and 13.71 × 10 6 m 

−1 

or Bentheimer and between 0.61 × 10 8 and 24.77 × 10 8 m 

−1 for

staillades. The wide range of these results does at least cover our

umerical predictions of 2.07 × 10 6 m 

−1 for Bentheimer and 6.15 ×
0 8 m 

−1 for Estaillades, although the 30-fold scatter does make quan-

itative use of the correlations problematic. Janicek and Katz [41] pro-

ide a good estimate for Bentheimer, while none of the correlations
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(a) (b)

Fig. 7. Plots of flow streamlines within Bentheimer pores (grey) at selected locations during (a) the Darcy regime ( Re K = 4 . 45 × 10 −6 ), and (b) the Forchheimer regime ( Re K = 

8 . 65 × 10 −3 ). The streamlines are coloured according to the ratios of the magnitude of velocity | u | at voxel centres to the average velocity | u | av spanning from 0 to 35. In this case 

we do not see the development of eddies in the transition to the Forchheimer regime. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

(a) (b)

Fig. 8. Plots of flow streamlines within beadpack pores (grey) at selected locations during (a) the Darcy regime ( Re K = 2 . 23 × 10 −3 ), and (b) the Forchheimer regime ( Re K = 

2 . 06 × 10 −1 ). The streamlines are coloured according to the ratios of the magnitude of velocity | u | at voxel centres to the average velocity | u | av spanning from 0 to 15. The red circle 

indicates a focused region of fast flow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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provides accurate predictions for Estaillades. Indeed, this demon-

strates the utility of our approach—to simulate flow directly in the

system of interest. 

3.5. Effects of grid refinement 

An adequately resolved grid is particularly important for simulat-

ing flows within samples with small pore spaces and complex bound-

aries. In order to capture strong inertial effects which, for instance,

manifest in delicate recirculation zones within Estaillades pores, one

needs to employ sufficiently fine grids to minimize the effect of

numerical errors. 

To examine grid convergence, we re-run some of the flow cases

within refined grids for the beadpack and Estaillades samples. For the

beadpack image, we subdivide each voxel into eight smaller voxels

of the same size to construct a new grid comprised of 600 × 600 ×
00 voxels, each with a voxel size of 1 μm . For our Estaillades im-

ge, we subdivide each voxel in the same way and construct a new

rid comprised of 10 0 0 × 10 0 0 × 10 0 0 voxels with a voxel size of

.655 μm . 

We computed flows at five different Reynolds numbers for the

eadpack i.e., Re K = 2 . 026 × 10 −6 and 2 . 026 × 10 −3 which are in the

arcy regime; 2 . 022 × 10 −2 and 7 . 3 × 10 −2 which are in the transi-

ion regime; and 1 . 879 × 10 −1 which is in the Forchheimer regime.

or Estaillades, we performed simulations at Re K = 3 . 766 × 10 −8 

nd 3 . 750 × 10 −5 which are in the Darcy regime; 7 . 454 × 10 −5 and

 . 001 × 10 −4 which are in the transition regime; and 3 . 312 × 10 −4 

hich is in the Forchheimer regime. The Darcy permeabilites com-

uted in the refined grids are given in Table 6 and are compared with

hose computed in the original grids. The dimensionless apparent

ermeabilities as a function of Re K computed in the original and in

he refined grids are plotted in Fig. 12 . 
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(a) (b)

Fig. 9. The plots of (a) the velocity field in the beadpack, generated on the centre plane z = 300 μm at Re pore = 3 . 85 ( Re K = 0 . 088 ), compared to (b) the velocities obtained using a 

PIV measurement of steady-state flow in a beadpack at Re pore = 3 . 77 by Patil and Liburdy [40] . Both fields show no signs of flow separation nor recirculation regions. Several very 

high velocity regions are seen, as a consequence of the three-dimensional flow geometry causing flow into large pore spaces. 

(a) (b)

(c)

Fig. 10. Forchheimer graphs for (a) the beadpack, (b) Bentheimer, and (c) Estaillades where 1 
K app 

is plotted as a function of ρU 
μ . β factors are obtained from the slopes of the graphs 

i.e., 2.57 × 10 5 m 

−1 for the beadpack, 2.07 × 10 6 m 

−1 for Bentheimer and 6.15 × 10 8 m 

−1 for Estaillades. 
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The Darcy permeabilities computed in the refined grids compare

ell with those computed in the original grids; they vary less than

%. Such a variation is consistent with the fact that new voxels could

ave given a way for new flow paths to emerge, as studied in [18] . To

llustrate this, we plot the streamlines in both the original and refined

rids of Estaillades pores at the Forchheimer regime, see Fig. 11 . Al-

hough there are additional flow paths in the refined grid, which now

onsists of 8-times as many voxels as the original grid, the main flow

atterns in both grids are comparable. 
When a comparison between the data computed in the origi-

al and the refined grids is made in terms of dimensionless appar-

nt permeabilities K 

∗ as functions of Re K , see Fig. 12 , the data com-

uted in the refined grid are in excellent agreement with the trend of

he data computed in the original grid in the Darcy, transition and

n the Forchheimer regimes; both predict consistent onsets of the

on-Darcy flow. These results suggest that we have used sufficiently

efined grids to describe the transition from Darcy to Forchheimer

ow. 



338 B.P. Muljadi et al. / Advances in Water Resources 95 (2016) 329–340 

Table 5 

β factors for Bentheimer (with K D = 3 . 547 × 10 −12 m 

2 , φ = 0 . 211 , and tortuosity = 1 . 52 ) and β

factors of Estaillades (with K D = 1 . 716 × 10 −13 m 

2 , φ = 0 . 108 , and tortuosity = 1 . 91 ) approxi- 

mated using the empirical correlations proposed by different authors. Our simulated values of 

β factors are 2 . 07 × 10 6 m 

−1 for Bentheimer, and 6.15 × 10 8 m 

−1 for Estaillades. 

Source Empirical model Units of Bentheimer Estaillades 

β β and K D β × 10 6 m 

−1 β × 10 8 m 

−1 

Janicek 
1 . 82 × 10 8 

K D 
5 / 4 φ3 / 4 

cm 

−1 , mD 2 .09 1 .53 

and Katz [41] 

Jones [8] 
6 . 15 × 10 10 

K D 
1 . 55 

ft −1 , mD 0 .62 0 .68 

Cooper et al. [42] 
10 −3 . 25 T 1 . 943 

K D 
1 . 023 

cm 

−1 , mD 5 .32 1 .83 

Geertsma [43] 
0 . 005 

K D 
0 . 5 φ5 . 5 

cm 

−1 , cm 

2 13 .71 24 .77 

Liu et al. [44] 
8 . 91 × 10 8 T 

K D φ
ft −1 , mD 5 .85 2 .97 

Thauvin 
1 . 55 × 10 4 T 3 . 35 φ0 . 29 

K D 
0 . 98 

cm 

−1 , D 2 .84 1 .43 

and Mohanty [12] 

Coles 
1 . 07 × 10 12 φ0 . 449 

K D 
1 . 88 

ft −1 , mD 0 .36 0 .79 

and Hartman [45] 

Li et al. [46] 
11500 

φK D 
cm 

−1 , D 1 .52 0 .61 

Table 6 

Comparison of Darcy permeabilities computed in the original and in the refined grids of the beadpack, and 

Estaillades. The results are in good agreement varying less than 5%. 

Beadpack Estaillades 

Original grid Refined grid Original grid Refined grid 

Image size 300 × 300 × 300 600 × 600 × 600 500 × 500 × 500 10 0 0 × 10 0 0 × 10 0 0 

Voxel size ( μm) 2 1 3.31 1.65 

K D (D) 5.650 5.386 0.173 0.167 

(a) (b)

Fig. 11. Plots of streamlines within Estaillades pores (grey) at selected locations during the Forchheimer regime computed in (a) the original grid, 500 × 500 × 500 voxels, at 

Re K = 3 . 275 × 10 −4 , and (b) the refined grid, 10 0 0 × 10 0 0 × 10 0 0 voxels, at Re K = 3 . 3125 × 10 −4 . Although additional flow paths are exhibited in the refined grid, the main flow 

characteristics in both grids are comparable. 

 

 

 

 

 

 

 

 

 

 

 

4. Concluding remarks 

• In this study, the effect of pore-scale heterogeneity on the onset

of non-Darcy flow has been investigated by means of direct flow

simulations through 3D images of a beadpack, Bentheimer sand-

stone and Estaillades carbonate. The onset of non-Darcy flow is

defined as the point when the dimensionless apparent permeabil-
ity K 

∗ = 0 . 99 ; using this criterion our analysis shows that the crit-

ical Reynolds number Re K indicating the onset of non-Darcy flow

for Estaillades is two orders of magnitude smaller than that for

Bentheimer and three orders of magnitude smaller than that for

the beapack. 
• The wide pore size distribution of Estaillades, as studied in [14] ,

combined with poor connectivity helps initiate the emergence
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(a) (b)

Fig. 12. The dimensionless permeability K ∗ as a function of Re K depicting the transition from the Darcy to non-Darcy flow regimes for (a) the beadpack, and (b) Estaillades. Symbol 

( ) represents the data computed in the original grid i.e., 30 0 × 30 0 × 30 0 for the beadpack (voxel size = 2 μm ), and 500 × 50 0 × 50 0 for Estaillades (voxel size = 3 . 31 μm ); 

whereas symbol ( ) represents the data computed in the refined grid i.e., 600 × 600 × 600 for the beadpack (voxel size = 1 μm ), and 10 0 0 × 10 0 0 × 10 0 0 for Estaillades (voxel 

size = 1 . 655 μ m). 
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of steady eddies which increases tortuosity, and reduces the ef-

fective area available for flow, triggering the departure from the

Darcy regime. In contrast, eddies do not emerge within Ben-

theimer nor the beadpack. In beadpack, the appearance of a fast

flow path characterizes the emergence of the Forchheimer regime,

and at much higher Reynolds numbers than seen in the carbonate.
• Our calculation of the Darcy permeability of the beadpack agrees

within around 20% with the Kozeny–Carman equation. Our pre-

dicted β factor for the beadpack is also in good agreement with

the Ergun estimation. Our predicted β factors for Bentheimer

sandstone and Estaillades carbonate have been compared to ex-

perimental data from various authors and are broadly compara-

ble, although none of the experiments was specifically conducted

on Bentheimer or Estaillades. 
• The predicted onsets of non-Darcy flow for the beadpack, Ben-

theimer and Estaillades have been compared to available experi-

mental data. For the beadpack, a very good agreement is found.

Fancher and Lewis [4] noted a smaller critical Reynolds number

for sandstone compared to packed particles, which is also what

we observed. The onset of non-Darcy flow for Estaillades does not

match the prediction of the available experimental data, none of

which relates to Estaillades, and which indicates that the onset

may be very sensitive to the details of the pore structure in very

heterogeneous rocks. 
• We suggest the use of the permeability-based Reynolds number

Re K and the dimensionless permeability K 

∗ proposed by Newman

and Yin [11] for predicting the onset of non-Darcy flow given their

sound physical meaning and convenience when used to com-

pare non-Darcy flow parameters of samples with different het-

erogeneities. 
• X-ray imaging technology used along with direct numerical sim-

ulation is a viable alternative to experiments or empirical models

for estimating macroscopic parameters of non-Darcy flow such as

the β factor, permeability, tortuosity and the onset of non-Darcy

flow. 
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