121 research outputs found

    Barriers to and Facilitators of COVID-19 Prevention Behaviors Among North Carolina Residents

    Get PDF
    COVID-19 was the third leading cause of death in the United States in 2020. Prior to the wide dissemination of SARS-CoV-2 vaccines, individual prevention behaviors, such as wearing face masks, have been the primary non-pharmaceutical interventions to reduce infections. We surveyed 404 North Carolina residents recruited through Amazon MTurk in July 2020 to assess adherence to key prevention behaviors (6-foot distancing, mask wearing, and gathering limits) and barriers to and facilitators of adherence. Participants reported past 7-day prevention behaviors and behavioral barriers and facilitators informed by the Integrated Behavior Model and the Health Belief Model (perceived risk, perceived severity, behavioral attitudes, injunctive and descriptive norms, and personal agency). Reported adherence to each behavior in the past 7 days was generally high, with lower adherence to 6-foot distancing and mask wearing in the work context. The most commonly endorsed barriers to 6-foot distancing included physical impediments, forgetting, and unfavorable descriptive norms. For mask wearing, ability to keep a distance, discomfort/inconvenience, and forgetting were most commonly endorsed. In logistic regression models, injunctive social norms followed by perceived personal agency were the strongest independent correlates of 6-foot distancing. Behavioral attitudes and injunctive social norms were independently associated with mask wearing. For gathering size limit adherence, perceived personal agency was the strongest independent predictor followed by perceived severity of COVID-19. Messaging campaigns targeting these barriers and facilitators should be tested. Interventions improving the convenience and salience of physical distancing and mask wearing in high-density public places and places of work may also promote prevention behaviors

    Development of randomized trials in adults with medulloblastoma - the example of EORTC 1634-BTG/NOA-23

    Get PDF
    Simple Summary Medulloblastoma is rare after puberty. Among several molecular subgroups that have been described, the sonic hedgehog (SHH) subgroup is highly overrepresented in the post-pubertal population and can be targeted with smoothened (SMO) inhibitors. However, no practice-changing prospective clinical trials have been published in adults to date. Tumors often recur, and treatment toxicity is relevant. Thus, the EORTC 1634-BTG/NOA-23 trial for post-pubertal patients with standard risk medulloblastoma will aim to increase treatment efficacy and to decrease treatment toxicity. Patients will be randomized between standard-dose vs. reduced-dosed radiotherapy, and SHH-subgroup patients will also be randomized between the SMO inhibitor sonidegib (Odomzo(TM,), Sun Pharmaceuticals Industries, Inc., New York, USA) in addition to standard radio-chemotherapy vs. standard radio-chemotherapy alone. In ancillary studies, we will investigate tumor tissue, blood and cerebrospinal fluid samples, magnetic resonance images, and radiotherapy plans to gain information that may improve future treatment. Patients will also be monitored long-term for late side effects of therapy, health-related quality of life, cognitive function, social and professional live outcomes, and reproduction and fertility. In summary, EORTC 1634-BTG/NOA-23 is a unique multi-national effort that will help to council patients and clinical scientists for the appropriate design of treatments and future clinical trials for post-pubertal patients with medulloblastoma. Medulloblastoma is a rare brain malignancy. Patients after puberty are rare and bear an intermediate prognosis. Standard treatment consists of maximal resection plus radio-chemotherapy. Treatment toxicity is high and produces disabling long-term side effects. The sonic hedgehog (SHH) subgroup is highly overrepresented in the post-pubertal and adult population and can be targeted by smoothened (SMO) inhibitors. No practice-changing prospective randomized data have been generated in adults. The EORTC 1634-BTG/NOA-23 trial will randomize patients between standard-dose vs. reduced-dosed craniospinal radiotherapy and SHH-subgroup patients between the SMO inhibitor sonidegib (Odomzo(TM), Sun Pharmaceuticals Industries, Inc., New York, USA) in addition to standard radio-chemotherapy vs. standard radio-chemotherapy alone to improve outcomes in view of decreased radiotherapy-related toxicity and increased efficacy. We will further investigate tumor tissue, blood, and cerebrospinal fluid as well as magnetic resonance imaging and radiotherapy plans to generate information that helps to further improve treatment outcomes. Given that treatment side effects typically occur late, long-term follow-up will monitor classic side effects of therapy, but also health-related quality of life, cognition, social and professional outcome, and reproduction and fertility. In summary, we will generate unprecedented data that will be translated into treatment changes in post-pubertal patients with medulloblastoma and will help to design future clinical trials.Neurolog

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Soil Carbon Levels in Irrigated Western Corn Belt Rotations

    Get PDF
    Proposals promoting the use of massive amounts of crop residues and other lignocellulosic biomass for biofuel production have increased the need for evaluation of the sustainability of cropping practices and their eff ect on environment quality. Our objective was to evaluate the eff ects of crop rotation and N fertilizer management and their stover production characteristics on soil organic carbon (SOC) levels in a long-term high-yielding irrigated study in the western Corn Belt. An irrigated monoculture corn (Zea mays L.), monoculture soybean [Glycine max (L.) Merr.], and soybean–corn cropping systems study was initiated in 1991 on a uniform site in the Platte Valley near Shelton, NE. Soil samples were collected in 1991 before initiation of the study and in the spring of 2005 and analyzed for SOC. Significant differences in total SOC values were obtained between rotations and N rates at the 0- to 7.5- and 0- to 15-cm depths in 2005 and all total SOC values were equal to or greater than SOC values obtained in 1991. Residue production was greater than 6 Mg ha-1, a level that appears to be sufficient to maintain SOC levels, in all systems. Can residue amounts above this level be harvested sustainably for biofuel production in cropping systems similar to these? Though these results suggest that a portion of corn stover could be harvested without reducing SOC under the conditions of this investigation, the direct impact of stover removal remains to be evaluated
    corecore