292 research outputs found

    Bioelectrochemical treatment of contaminated groundwater

    Get PDF
    To remove these pollutants from groundwater, different technologies can be used. Currently, the Environmental Protection Agency (EPA) considers ion exchange, reverse osmosis and reverse electrodialysis to be effective methods for the decrease of their concentrations, below their limit in drinking water. These technologies have some drawbacks, such as low selectivity towards the target pollutant, high energy or chemicals requirements, and the generation of waste brine (pollutants are separated from water, not treated), which require an additional treatment. Bio Electro Chemical Systems (BES) could fill this nich

    Efficient molasses fermentation under high salinity by inocula of marine and terrestrial origin

    Get PDF
    BACKGROUND: Molasses is a dense and saline by-product of the sugar agroindustry. Its high organic content potentially fuels a myriad of renewable products of industrial interest. However, the biotechnological exploitation of molasses is mainly hampered by the high concentration of salts, an issue that is nowadays tackled through dilution. In the present study, the performance of microbial communities derived from marine sediment was compared to that of communities from a terrestrial environment (anaerobic digester sludge). The aim was to test whether adaptation to salinity represented an advantage for fermenting molasses into renewable chemicals such as volatile fatty acids (VFAs) although high sugar concentrations are uncommon to marine sediment, contrary to anaerobic digesters. RESULTS: Terrestrial and marine microbial communities were enriched in consecutive batches at different initial pH values (pH(i); either 6 or 7) and molasses dilutions (equivalent to organic loading rates (OLRs) of 1 or 5 g(COD) L(−1) d(−1)) to determine the best VFA production conditions. Marine communities were supplied with NaCl to maintain their native salinity. Due to molasses inherent salinity, terrestrial communities experienced conditions comparable to brackish or saline waters (20–47 mS cm(−1)), while marine conditions resembled brine waters (>47 mS cm(−1)). Enrichments at optimal conditions of OLR 5 g(COD) L(-1) d(-1) and pH(i) 7 were transferred into packed-bed biofilm reactors operated continuously. The reactors were first operated at 5 g(COD) L(-1) d(-1), which was later increased to OLR 10 g(COD) L(−1) d(−1). Terrestrial and marine reactors had different gas production and community structures but identical, remarkably high VFA bioconversion yields (above 85%) which were obtained with conductivities up to 90 mS cm(−1). COD-to-VFA conversion rates were comparable to the highest reported in literature while processing other organic leftovers at much lower salinities. CONCLUSIONS: Although salinity represents a major driver for microbial community structure, proper acclimation yielded highly efficient systems treating molasses, irrespective of the inoculum origin. Selection of equivalent pathways in communities derived from different environments suggests that culture conditions select for specific functionalities rather than microbial representatives. Mass balances, microbial community composition, and biochemical analysis indicate that biomass turnover rather than methanogenesis represents the main limitation to further increasing VFA production with molasses. This information is relevant to moving towards molasses fermentation to industrial application. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-017-0701-8) contains supplementary material, which is available to authorized users

    A Clostridium group IV species dominates and suppresses a mixed culture fermentation by tolerance to medium chain fatty acids products

    Get PDF
    A microbial community is engaged in a complex economy of cooperation and competition for carbon and energy. In engineered systems such as anaerobic digestion and fermentation, these relationships are exploited for conversion of a broad range of substrates into products, such as biogas, ethanol, and carboxylic acids. Medium chain fatty acids (MCFAs), for example, hexanoic acid, are valuable, energy dense microbial fermentation products, however, MCFA tend to exhibit microbial toxicity to a broad range of microorganisms at low concentrations. Here, we operated continuous mixed population MCFA fermentations on biorefinery thin stillage to investigate the community response associated with the production and toxicity of MCFA. In this study, an uncultured species from the Clostridium group IV (related to Clostridium sp. BS-1) became enriched in two independent reactors that produced hexanoic acid (up to 8.1 g L−1), octanoic acid (up to 3.2 g L−1), and trace concentrations of decanoic acid. Decanoic acid is reported here for the first time as a possible product of a Clostridium group IV species. Other significant species in the community, Lactobacillus spp. and Acetobacterium sp., generate intermediates in MCFA production, and their collapse in relative abundance resulted in an overall production decrease. A strong correlation was present between the community composition and both the hexanoic acid concentration (p = 0.026) and total volatile fatty acid concentration (p = 0.003). MCFA suppressed species related to Clostridium sp. CPB-6 and Lactobacillus spp. to a greater extent than others. The proportion of the species related to Clostridium sp. BS-1 over Clostridium sp. CPB-6 had a strong correlation with the concentration of octanoic acid (p = 0.003). The dominance of this species and the increase in MCFA resulted in an overall toxic effect on the mixed community, most significantly on the Lactobacillus spp., which resulted in a decrease in total hexanoic acid concentration to 32 ± 2% below the steady-state average. As opposed to the current view of MCFA toxicity broadly leading to production collapse, this study demonstrates that varied tolerance to MCFA within the community can lead to the dominance of some species and the suppression of others, which can result in a decreased productivity of the fermentation

    Sponges and ascidians control removal of particulate organic nitrogen from coral reef water

    Get PDF
    10 pages, 5 figures, 5 tables.-- This is HIMB contribution 1199 and SOEST contribution 6596We studied removal rates of plankton and total particulate organic nitrogen (PON) by benthic reef communities from the overlying water in a large experimental flume. The flume was filled with mixtures of coral and coral rubble, and biomass of plankton was measured as water was recirculated over the experimental benthic community. All planktonic particle types, picoplankton, nanoplankton, microplankton, and total PON, decreased in concentration at rates proportional to their biomass. The mean first-order rate constant for the decrease in particle concentration was 96 ± 61 × 10-6 m s-1, corresponding to PON uptake of 10 mmol N m-2 d -1. Synechococcus sp. and heterotrophic bacteria were the major sources of PON. Particulate organic nitrogen removed by rubble and live coral assemblages was directly related to sponge and ascidian biomass (number and area) on the coral and coral rubble. Uptake of PON was about the same as the previously measured uptake of dissolved inorganic nitrogen into these coral reef communities, making it an important flux of nitrogen into the reef. © 2005, by the American Society of Limnology and Oceanography, Inc.Support for this work was provided by a postdoctoral fellowship from the Ministerio de Educación y Cultura (MEC) and a Ramón y Cajal research contract to M.R. This paper was funded in part by NOAA project R/CR-1, which is sponsored by the University of Hawaii Sea Grant College Program, School of Ocean and Earth Science Technology (SOEST), under grant NA 86RG0041. Additional funding was provided by CISNet (NOAA project NA 870A0531) and TransCom (Transfer at Community level) project (REN2002-01631/MAR)Peer Reviewe

    Selecting fermentation products for food waste valorisation with HRT and OLR as the key operational parameters.

    Get PDF
    Acidogenic fermentation is attractive for food waste valorisation. A better understanding is required on how operation affects product selectivity. This study demonstrated that the hydraulic retention time (HRT) and organic loading rate (OLR) selected fermentation pathways in a single-stage, semicontinuous stirred tank reactor. Three combinations of HRT and OLR were tested to distinguish the effect of each parameter. Three fermentation profiles with distinct microbial communities were obtained. Predominantly n-butyric acid (13 ± 2 gCOD L-1, 55 ± 14% of carboxylates) was produced at an HRT of 8.5 days and OLR around 12 gCOD L-1 d-1. Operating at an HRT two days longer, yet with similar OLR, stimulated chain elongation (up to 13.6 gCOD L-1 of n-caproic acid). This was reflected by a microbial community twice as diverse at longer HRT as indicated by first and second order Hill number (1D = 24 ± 4, 2D = 12 ± 3) and by a higher relative abundance of genera related to secondary fermentation, such as the VFA-elongating Caproiciproducens spp., and secondary lactic acid fermenter Secundilactobacillus spp.. Operating at a higher OLR (20 gCOD L-1 d-1) but HRT of 8.5 days, resulted in typical lactic acid fermentation (34 ± 5 gCOD L-1) harbouring a less diverse community (1D = 8.0 ± 0.7, 2D = 5.7 ± 0.9) rich in acid-resistant homofermentative Lactobacillus spp. These findings demonstrate that a flexible product portfolio can be achieved by small adjustments in two key operating conditions. This improves the economic potential of acidogenic fermentation for food waste valorisation
    • …
    corecore