

Fermentation and recovery of bio-refinery thin stillage to volatile fatty acids with zero-chemical input

<u>Pieter Candry</u>, Stephen Andersen, Marta Coma, Hugo Roume, Korneel Rabaey

Laboratory of Microbial Ecology & Technology, Ghent University pieter.candry@ugent.be

Volatile fatty acids (VFA) – applicable as building blocks in the chemical industry - can be produced through fermentation of biorefinery waste streams. The main drawbacks to be addressed are: i) inhibition of methanogenesis and chemical input for pH control; ii) product extraction from fermentation broth; and iii) steering the microbiome towards target products. All three of these key issues are tackled using membrane electrolysis coupled to an acidogenic fermenter.

1. Methanogenic activity

2. Separation of product

No extraction

With extraction

3. Ecology of the fermenting community

Lactobacillus spp. and Megasphaera sp. elongation?

Acetate + Lactate \rightarrow Butyrate + CO₂ + H₂O Butyrate + Lactate \rightarrow Caproate + CO₂ + H₂O

Propionate + Lactate \rightarrow Valerate + CO₂ + H₂O

 H_2 -driven selection of elongating species? $NAD^+ + H_2 \rightarrow NADH + H^+$ \rightarrow More energy for H₂-consumers

To be confirmed

Time - days

For generously providing the thin stillage used in these experiments

More than Ethanol