68 research outputs found

    An experimental study on micro-milling of a medical grade Co-Cr-Mo alloy produced by selective laser melting

    Get PDF
    Cobalt-chromium-molybdenum (Co-Cr-Mo) alloys are very promising materials, in particular, in the biomedical field where their unique properties of biocompatibility and wear resistance can be exploited for surgery applications, prostheses, and many other medical devices. While Additive Manufacturing is a key technology in this field, micro-milling can be used for the creation of micro-scale details on the printed parts, not obtainable with Additive Manufacturing techniques. In particular, there is a lack of scientific research in the field of the fundamental material removal mechanisms involving micro-milling of Co-Cr-Mo alloys. Therefore, this paper presents a micro-milling characterization of Co-Cr-Mo samples produced by Additive Manufacturing with the Selective Laser Melting (SLM) technique. In particular, microchannels with different depths were made in order to evaluate the material behavior, including the chip formation mechanism, in micro-milling. In addition, the resulting surface roughness (Ra and Sa) and hardness were analyzed. Finally, the cutting forces were acquired and analyzed in order to ascertain the minimum uncut chip thickness for the material. The results of the characterization studies can be used as a basis for the identification of a machining window for micro-milling of biomedical grade cobalt-chromium-molybdenum (Co-Cr-Mo) alloys

    USING VIRTUAL OR AUGMENTED REALITY for the TIME-BASED STUDY of COMPLEX UNDERWATER ARCHAEOLOGICAL EXCAVATIONS

    Get PDF
    International audienceCultural Heritage (CH) resources are partial, heterogeneous, discontinuous, and subject to ongoing updates and revisions. The use of semantic web technologies associated with 3D graphical tools is proposed to improve access, exploration, exploitation and enrichment of these CH data in a standardized and more structured form. This article presents the monitoring work developed for more than ten years on the excavation of the Xlendi site. Around an exceptional shipwreck, the oldest from the Archaic period in the Western Mediterranean, we have set up a unique excavation at a depth of 110m assisted by a rigorous and continuous photogrammetry campaign. All the collected results are modelled by an ontology and visualized with virtual and augmented reality tools that allow a bidirectional link between the proposed graphical representations and the non-graphical archaeological data. It is also important to highlight the development of an innovative 3D mobile app that lets users study and understand the site as well as experience sensations close to those of a diver visiting the site

    MicroRNA-21/PDCD4 proapoptotic signaling from circulating CD34+ cells to vascular endothelial cells:a potential contributor to adverse cardiovascular outcomes in patients with critical limb ischemia

    Get PDF
    Dataset related to the article with title: MicroRNA-21/PDCD4 proapoptotic signaling from circulating CD34+ cells to vascular endothelial cells: a potential contributor to adverse cardiovascular outcomes in patients with critical limb ischemia By:Gaia Spinetti1, Elena Sangalli1, Elena Tagliabue1, Davide Maselli1, Ornella Colpani1, David Ferland-McCollough2, Franco Carnelli1, Patrizia Orlando1, Agostino Paccagnella3, Anna Furlan3, Piero Maria Stefani3, Luisa Sambado3, Maria Sambataro3, and Paolo Madeddu2. 1IRCCS MultiMedica, Milan, Italy; 2University of Bristol, Bristol, UK, 3Ca Foncello Hospital, Treviso, Italy. Diabetes Care. 2020 Jul;43(7):1520-1529. doi: 10.2337/dc19-2227. Epub 2020 May 1. Abstract Objective. In patients with type 2 diabetes (T2D) and critical limb ischemia (CLI), migration of circulating CD34+ cells predicted cardiovascular mortality at 18 months post-revascularization. This study aimed to provide long-term validation and mechanistic understanding of the biomarker. Research Design and Methods. The association between CD34+ cell migration and cardiovascular mortality was reassessed at 6 years post-revascularization. In a new series of T2D-CLI and control subjects, immuno-sorted bone marrow (BM)-CD34+ cells were profiled for microRNA expression and assessed for apoptosis and angiogenesis activity. The differentially regulated microRNA-21, and its pro-apoptotic target PDCD4, were titrated to verify their contribution in transferring damaging signals from CD34+ cells to endothelial cells. Results. Multivariable regression analysis confirmed CD34+ cell migration forecasts long-term cardiovascular mortality. CD34+ cells from T2D-CLI patients were more apoptotic and less proangiogenic than controls and featured microRNA-21 downregulation, modulation of several long non-coding RNAs acting as microRNA-21 sponges, and upregulation of the microRNA-21 proapoptotic target PDCD4. Silencing miR-21 in control CD34+ cells phenocopied the T2D-CLI cell behavior. In coculture, T2D-CLI CD34+ cells imprinted naĂŻve endothelial cells, increasing apoptosis, reducing network formation, and modulating the TUG1 sponge/microRNA-21/PDCD4 axis. Silencing PDCD4 or scavenging ROS protected endothelial cells from the negative influence of T2D-CLI CD34+ cells Conclusions. Migration of CD34+ cells predicts long-term cardiovascular mortality in T2D-CLI patients. An altered paracrine signalling conveys anti-angiogenic and pro-apoptotic features from CD34+ cells to the endothelium. This damaging interaction may increase the risk for life-threatening complications

    Impact of common cardio-metabolic risk factors on fatal and non-fatal cardiovascular disease in Latin America and the Caribbean: an individual-level pooled analysis of 31 cohort studies

    Get PDF
    Background: Estimates of the burden of cardio-metabolic risk factors in Latin America and the Caribbean (LAC) rely on relative risks (RRs) from non-LAC countries. Whether these RRs apply to LAC remains un- known. Methods: We pooled LAC cohorts. We estimated RRs per unit of exposure to body mass index (BMI), systolic blood pressure (SBP), fasting plasma glucose (FPG), total cholesterol (TC) and non-HDL cholesterol on fatal (31 cohorts, n = 168,287) and non-fatal (13 cohorts, n = 27,554) cardiovascular diseases, adjusting for regression dilution bias. We used these RRs and national data on mean risk factor levels to estimate the number of cardiovascular deaths attributable to non-optimal levels of each risk factor. Results: Our RRs for SBP, FPG and TC were like those observed in cohorts conducted in high-income countries; however, for BMI, our RRs were consistently smaller in people below 75 years of age. Across risk factors, we observed smaller RRs among older ages. Non-optimal SBP was responsible for the largest number of attributable cardiovascular deaths ranging from 38 per 10 0,0 0 0 women and 54 men in Peru, to 261 (Dominica, women) and 282 (Guyana, men). For non-HDL cholesterol, the lowest attributable rate was for women in Peru (21) and men in Guatemala (25), and the largest in men (158) and women (142) from Guyana. Interpretation: RRs for BMI from studies conducted in high-income countries may overestimate disease burden metrics in LAC; conversely, RRs for SBP, FPG and TC from LAC cohorts are similar to those esti- mated from cohorts in high-income countries

    The global impact of non-communicable diseases on macro-economic productivity: a systematic review

    Get PDF
    © 2015, The Author(s). Non-communicable diseases (NCDs) have large economic impact at multiple levels. To systematically review the literature investigating the economic impact of NCDs [including coronary heart disease (CHD), stroke, type 2 diabetes mellitus (DM), cancer (lung, colon, cervical and breast), chronic obstructive pulmonary disease (COPD) and chronic kidney disease (CKD)] on macro-economic productivity. Systematic search, up to November 6th 2014, of medical databases (Medline, Embase and Google Scholar) without language restrictions. To identify additional publications, we searched the reference lists of retrieved studies and contacted authors in the field. Randomized controlled trials, cohort, case–control, cross-sectional, ecological studies and modelling studies carried out in adults (>18 years old) were included. Two independent reviewers performed all abstract and full text selection. Disagreements were resolved through consensus or consulting a third reviewer. Two independent reviewers extracted data using a predesigned data collection form. Main outcome measure was the impact of the selected NCDs on productivity, measured in DALYs, productivity costs, and labor market participation, including unemployment, return to work and sick leave. From 4542 references, 126 studies met the inclusion criteria, many of which focused on the impact of more than one NCD on productivity. Breast cancer was the most common (n = 45), followed by stroke (n = 31), COPD (n = 24), colon cancer (n = 24), DM (n = 22), lung cancer (n = 16), CVD (n = 15), cervical cancer (n = 7) and CKD (n = 2). Four studies were from the WHO African Region, 52 from the European Region, 53 from the Region of the Americas and 16 from the Western Pacific Region, one from the Eastern Mediterranean Region and none from South East Asia. We found large regional differences in DALYs attributable to NCDs but especially for cervical and lung cancer. Productivity losses in the USA ranged from 88 million US dollars (USD) for COPD to 20.9 billion USD for colon cancer. CHD costs the Australian economy 13.2 billion USD per year. People with DM, COPD and survivors of breast and especially lung cancer are at a higher risk of reduced labor market participation. Overall NCDs generate a large impact on macro-economic productivity in most WHO regions irrespective of continent and income. The absolute global impact in terms of dollars and DALYs remains an elusive challenge due to the wide heterogeneity in the included studies as well as limited information from low- and middle-income countries.WHO; Nestle´ Nutrition (Nestec Ltd.); Metagenics Inc.; and AX

    Impact of common cardio-metabolic risk factors on fatal and non-fatal cardiovascular disease in Latin America and the Caribbean: an individual-level pooled analysis of 31 cohort studies

    Get PDF
    Background: Estimates of the burden of cardio-metabolic risk factors in Latin America and the Caribbean (LAC) rely on relative risks (RRs) from non-LAC countries. Whether these RRs apply to LAC remains un- known. Methods: We pooled LAC cohorts. We estimated RRs per unit of exposure to body mass index (BMI), systolic blood pressure (SBP), fasting plasma glucose (FPG), total cholesterol (TC) and non-HDL cholesterol on fatal (31 cohorts, n = 168,287) and non-fatal (13 cohorts, n = 27,554) cardiovascular diseases, adjusting for regression dilution bias. We used these RRs and national data on mean risk factor levels to estimate the number of cardiovascular deaths attributable to non-optimal levels of each risk factor. Results: Our RRs for SBP, FPG and TC were like those observed in cohorts conducted in high-income countries; however, for BMI, our RRs were consistently smaller in people below 75 years of age. Across risk factors, we observed smaller RRs among older ages. Non-optimal SBP was responsible for the largest number of attributable cardiovascular deaths ranging from 38 per 10 0,0 0 0 women and 54 men in Peru, to 261 (Dominica, women) and 282 (Guyana, men). For non-HDL cholesterol, the lowest attributable rate was for women in Peru (21) and men in Guatemala (25), and the largest in men (158) and women (142) from Guyana. Interpretation: RRs for BMI from studies conducted in high-income countries may overestimate disease burden metrics in LAC; conversely, RRs for SBP, FPG and TC from LAC cohorts are similar to those esti- mated from cohorts in high-income countries

    Feasibility analysis and characterization of an extrusion-based AM process for a two-component and biocompatible silicone

    No full text
    Silicone is a very widespread material with important applications especially in the medical field. Currently, Additive Manufacturing (AM) is a promising technology for the fabrication of custom products and some commercial machines are available on the market for processing biocompatible silicone. Although, no scientific literature is available on the characterization and control of the process. Given the research challenge, this work presents and investigate a novel process for 3D printing of biomedical silicone. An ad hoc equipment was realized and integrated with the Fab@Home 3D printer in order to thermally control the extrusion process of the silicone. Then, the equipment was characterized and used to study the feasibility of the process and the influence of the process parameters (Deposition Rate, Path Speed, Temperature). Quality control charts and Design of Experiments methods were used to study the stability of the process and to statistically evaluate the influence of the process parameters. Results brought to the definition of a process feasibility window and to a numerical model able to predict the dimension of the printed layer as a function of the tested parameters. A technique for the AM of biomedical silicone parts was developed and characterized. In particular, results furnish a fundamental knowledge for the control of the process. The biomedical field is one of the main target, particularly the fabrication of custom medical devices

    Characterization and optimization of the hydroforming process of AISI 316L steel hydraulic tubes

    No full text
    Hydroforming is a metal forming technology that enables the fabrication of complex parts in a low cycle time. The process is based on the plastic deformation of a blank sheet using a pressurized fluid. This paper focuses on the design of a tube hydroforming (THF) process to replace the current cut-and-weld practice for components produced by a company. Specifically, the study focuses on the characterization and optimization of the THF process for stainless steel T-joint parts produced in two sizes: small and large. The new production must improve the final components’ quality and maintain the technical requirements of the previous one, especially in terms of the parts’ geometry (in particular, the third branch minimum height and thickness) and material (AISI 316L), with competitive production costs. Accordingly, the process optimization is performed in three sequential steps. Initially, the process is characterized by the material flow stress and the friction between a tube and die. Subsequently, this information is used to develop a finite element method (FEM) model, which is validated based on experimental data. The FEM is used to optimize the process parameters (pressure, stroke, and trust force of the counterpunch) to improve the final component quality and guarantee the specific dimensional requirements. Finally, further improvements of the process are implemented (initial precrash of the tube, optimal length of the blank tube, and calibration pressure to avoid wrinkles in the final component). After the THF process optimization, emphasis is placed on the punch geometry. A study is conducted to avoid stress concentrations that may cause punch breakage. The results of this study allow the minimization of tube thinning during the hydroforming process, and guarantee the target value for the third branch height with minimal material consumption. Moreover, the evaluation of different geometrical alternatives allows the stresses acting on the punches to be reduced by 45%
    • …
    corecore