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Abstract 

Objective. In patients with type 2 diabetes (T2D) and critical limb ischemia (CLI), migration of 

circulating CD34+ cells predicted cardiovascular mortality at 18 months post-revascularization. 

This study aimed to provide long-term validation and mechanistic understanding of the 

biomarker.  

Research Design and Methods. The association between CD34+ cell migration and 

cardiovascular mortality was reassessed at 6 years post-revascularization. In a new series of 

T2D-CLI and control subjects, immuno-sorted bone marrow (BM)-CD34+ cells were profiled for 

microRNA expression and assessed for apoptosis and angiogenesis activity. The differentially 

regulated microRNA-21, and its pro-apoptotic target PDCD4, were titrated to verify their 

contribution in transferring damaging signals from CD34+ cells to endothelial cells. 

Results. Multivariable regression analysis confirmed CD34+ cell migration forecasts long-term 

cardiovascular mortality. CD34+ cells from T2D-CLI patients were more apoptotic and less 

proangiogenic than controls and featured microRNA-21 downregulation, modulation of several 

long non-coding RNAs acting as microRNA-21 sponges, and upregulation of the microRNA-21 

proapoptotic target PDCD4. Silencing miR-21 in control CD34+ cells phenocopied the T2D-CLI 

cell behavior. In coculture, T2D-CLI CD34+ cells imprinted naïve endothelial cells, increasing 

apoptosis, reducing network formation, and modulating the TUG1 sponge/microRNA-

21/PDCD4 axis.  Silencing PDCD4 or scavenging ROS protected endothelial cells from the 

negative influence of T2D-CLI CD34+ cells 

Conclusions. Migration of CD34+ cells predicts long-term cardiovascular mortality in T2D-CLI 

patients. An altered paracrine signalling conveys anti-angiogenic and pro-apoptotic features 

from CD34+ cells to the endothelium. This damaging interaction may increase the risk for life-

threatening complications. 

 
  



 

3 

 

Introduction 

The chemokine stromal-derived factor-1 (SDF-1) participates in cardiovascular repair through 

the mobilization of bone marrow (BM)-derived CD34+ progenitor cells that express the CXCR4 

receptor. CD34+CXCR4+ cells positively interact with vascular endothelium by releasing trophic 

soluble factors and extracellular vesicles (EVs).  Risk factors, ageing, and age-related diseases 

compromise this homeostatic mechanism by perturbing the BM microenvironment1, 2. 

Interestingly, both biased myelopoiesis and deficit/dysfunction of CD34+ cells are associated 

with an increased risk of cardiovascular morbidity and mortality3-10.  

We showed that CD34+ cell migration predicted cardiovascular mortality in patients with 

type 2 diabetes (T2D) undergoing revascularization of critical limb ischemia (CLI) 10.  

Phenotypic changes in CD34+ cells may cause systemic vascular damage in these high-risk 

patients through anti-angiogenic and pro-apoptotic  microRNAs (miRs)10-13.  

The present study investigated (1) if CD34+ cells predict cardiovascular mortality long-

term and (2) how CD34+ cells cause vascular damage instead of repair.  
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Methods 

See Supplementary Data online for supplemental Tables and Figures  

Study 1: CD34+ cell migration predicts long-term mortality 

We performed a phone survey of T2D-CLI patients recruited in the NCT01269580 study, which 

demonstrated that migration of peripheral blood (PB) CD45dimCD34+CXCR4+KDR+ cells 

predicted cardiovascular death after angioplasty10. At 6 years,15 patients were lost to follow-

up and therefore excluded. Baseline characteristics of the remaining 104 patients are 

summarized in Supplemental Table 1.  

Study 2: Molecular mediators of CD34+ cell-induced vascular damage 

Clinical characteristics of a new cohort, comprising 47 controls and 41 patients with T2D, of 

which 30 affected by CLI, are reported in Supplemental Table 2. T2D and CLI were defined 

according to the American Diabetes Association and TASC 2007, respectively. Exclusion 

criteria: acute disease/infection, immune diseases, current/past hematological disorders or 

malignancy, unstable angina, recent (within 6 months) myocardial infarction or stroke, liver 

failure, renal failure, and pregnancy. All participants signed an informed consent to donate the 

BM leftovers from femoral head otherwise discarded during hip replacement surgery (ctr and 

subjects with T2D without complications) or BM aspirates of the iliac crest performed ad hoc 

for the study (T2D-CLI patients).  

The studies received ethical authorization from the IRCCS MultiMedica, Milan, Italy 

(PROT 20/2010), Bristol University, Bristol, UK (REC14/SW/1083 and REC14/WA/1005), and 

Santa Maria ‘Ca Foncello Hospital, Treviso, Italy (DDG 2333/2017)13, 14. BM-CD34+ cells were 

assessed in situ or following immunomagnetic beads isolation as described in 13. Some assays 

were conducted using the CD34+ cells-derived conditioned medium (CCM) and respective EVs 

collected using Exospin kit (Cell Guidance System) following the manufacturer’s instructions.  
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MicroRNAs and gene expression analyses of CD34+ cells 

MiR profiling was conducted at Exiqon Services, Denmark. Total RNA (30ng) was reverse-

transcribed using the miRCURY LNA™ Universal RT miR PCR, Polyadenylation and cDNA 

synthesis kit (Exiqon). The amplification was performed in a LightCycler® 480 Real-Time PCR 

System (Roche) in 384 well plates. A total number of 372 miRs were tested. A cut-off (Ct>37) 

was used to consider a miR as expressed and included in the subsequent analyses.  

For biological validation and expressional studies, RNA was extracted from cultured 

cells, cell-derived CCM/EVs, plasma, and plasma-derived EVs using miRNeasy Mini Kit 

(Qiagen) following the manufacturer’s instructions. Quantitative RT-PCR was performed with 

the QuantStudio 6 Flex Real-Time PCR using miR TaqMan probes (Thermo Fisher) and 

lncRNA/gene primers listed in Supplemental Table 3. MiR-21 was silenced in CTRL-BM-

CD34+cells by transfecting them with 50nmol/L anti-miR-21-5p (AM10206Ambion) while 

controls were transfected with a non-targeting sequence or scramble (SCR) (AM4611, 

Silencer® Negative Control, Ambion), employing transfection reagents (Genlantis) according 

to the manufacturer’s protocol. 

In vitro migration and flow cytometry 

PB-MNCs in vitro migration assays using SDF-1 as chemoattractant were performed using 

transwell chambers as described10. Migrated cells were stained for surface antigens CD45 

(FITC, BD Bioscience), CD34 (PeCy7, BD Bioscience), CXCR4 (APC, BD Bioscience), then 

fixed in Met-OH, permeabilized in PBS-Tween 0.1%-BSA 0.5% and stained for intracellular 

antigen PDCD4 (Abcam) with secondary antibody anti-rabbit-PE (BD Bioscience). Cells were 

analyzed using a FACSCanto flow cytometer with the FACSDiva software (both from BD 

Biosciences) 

Apoptosis assay 

BM-CD34+ cells or HUVECs were stained with 7-AAD/Annexin-V and analyzed on FACSCanto 

II flow cytometer (BD Biosciences). The 7-AAD-/Annexin V+ combination identified apoptotic 
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cells. Caspase-3/7 Assay (Promega) was performed on HUVECs exposed to CD34+ cells 

CCMs.  

PDCD4 silencing 

HUVECs were transfected with 50 nmol/L siPDCD4 (Dharmacon) or non-targeting sequence, 

(AM4611, Silencer Negative Control, Ambion). 

Immunohistochemistry  

Paraffin embedded-BM sections were incubated with: rabbit anti-PDCD4 (1:200; abcam), 

mouse anti CD34 (1:5, Dako), rabbit anti 4-Hydroxy-2-Nonenal (4-HNE) (1:500, Bioss). Nuclei 

were counterstained with DAPI (1 μg/mL, Sigma Aldrich). Images were acquired with a 

fluorescent microscope (Leica microsystem DM6 B) at 63X magnification and analyzed using 

Fiji software. Cultured HUVECs were fixed with 4% PFA (Electron Microscopy Science), 

permeabilized with 0.3% triton (Sigma Aldrich), and stained with rabbit anti-PDCD4 (1:200). 

Nuclei were counterstained with DAPI (1μg/mL, Sigma Aldrich). Microphotographs were 

captured using a Zeiss microscope equipped with digital image processing software 

(AxioVision Imaging System). 

Immunoistochemistry: BM sections were stained with rabbit anti-PDCD4 (1:200) by 

BenchMark ULTRA system (Roche). Ten images for each sample were acquired with an optical 

microscope (Nikon Eclipse E800) at 40X magnification and quantified by using ImageJ 

software. 

In vitro angiogenesis 

BM-CD34+ cells, their CCM, or isolated EVs were cocultured with HUVECs (1:1 ratio) on 

Matrigel™ (Corning® Incorporated Life Sciences)15. 

Statistical analyses  

Continuous variables were expressed as mean ± standard deviation or standard error as 

indicated, tested for normality by the Kolmogorov-Smirnov test, and compared using 

parametric (t test or ANOVA) or non-parametric tests (Wilcoxon or Kruskal Wallis), as 
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appropriate. Categorical variables were expressed as frequency and percentage, and 

compared by Chi-Square test or Fisher’s Exact test. A p-value < 0.05 was considered 

statistically significant. SAS (version 9.4), R (version 3.4.4), and GraphPad Prism (version 7) 

were used for analyses and graphics. 

In study 1, cumulative incidences of events were drawn overall and for data stratified by 

cells (above vs. below the median) that significantly differed between participants with or 

without events. This analysis considered the competitive causes of the event;16 specifically, in 

the case of cardiovascular death, other-causes-of-death were considered as a competitive 

event, and vice-versa. Comparisons between incidence curves were assessed fitting the 

'proportional sub-distribution hazards' regression model17. Time-to-event was defined as the 

time from revascularization to death (cardiovascular or for other causes). Patients lost to follow-

up were excluded from the analyses. The 15th day of a given month and the month of June 

were imputed if the day or month of follow-up were missing, respectively. Incidence rate and 

95% Confidence Interval (CI) at 3 years and 6 years of follow-up were calculated for 

cardiovascular death and other-causes-of-death. 

To evaluate the association between basal cell counts and migratory activity and risk of 

death, the event-specific hazard ratio (HR) and 95% CI was calculated. HRs associated with 

cell migration were evaluated for one-year increase, for presence of history of coronary artery 

disease, and for 0.01 unit increase in the percentage of CD45dimCD34+CXCR4+KDR+ migrated 

cells toward SDF-1 over total MNCs. All models were performed for presence of investigated 

variable, if dichotomous, and for 1-unit increase of continuous variables, if not otherwise 

specified. A multivariable regression model was subsequently implemented, adjusting for 

prognostic features that were found significantly associated with the event in the univariate 

analysis.  

  



 

8 

 

Results  
 
CD34+ cell migration and cardiovascular mortality  

Supplemental Table 1 illustrates clinical/laboratory data of the 104 T2D-CLI patients who 

completed the 6-year follow-up.  

Three outcomes were considered: no-event (N=54), cardiovascular death (N=32), and 

other-causes-of-death (N=18). Age at recruitment was the only clinical data that differed among 

the 3 outcomes (p=0.0067) (Supplemental Table 4). Regarding CD45dimCD34+CXCR4+KDR+ 

cells, migration toward SDF-1 (experimental setting illustrated in Figure 1Ai) was higher in the 

cardiovascular death group compared with no-event or other-causes-of-death groups 

(p=0.0312), whereas there was no difference in PB levels of CD45dimCD34+CXCR4+KDR+ cells 

or in the migration of total MNCs and CD45dimCD34+CXCR4+KDR+ cells exposed to the SDF-

1 vehicle (Supplemental Table 5 and Supplemental Figure 1). 

As shown in Figure 1Aii and Supplemental Table 6, patients with values of SDF-1-

migrated cells ≥ the median had higher cumulative incidence of cardiovascular death compared 

with those with values < median (p=0.0012). Cell migration was associated with an increased 

cardiovascular risk (HR; 95%CI=1.10; 1.04-1.17. p = 0.0005, data not shown), further 

confirmed by multivariable Cox analysis simultaneously assessing the effect of age and 

prevalence of coronary artery disease (Supplemental Table 7).  

BM-CD34+ cell viability and angiogenic activity 

To obtain mechanistic insights into the observed association, we studied the functional 

characteristics of BM-CD34+ cells from a new series of patients with T2D or T2D-CLI and non-

diabetic subjects (controls). 

In line with previous studies13, flow cytometry analyses demonstrated that CD34+ cells 

immune-magnetically sorted from the BM of T2D-CLI patients have a 2.5-fold higher 

abundance of 7-AAD-/Annexin V+ events compared with controls (Figure 1B).  
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Moreover, using an in-vitro Matrigel assay, we demonstrated that the coculture of human 

umbilical vascular endothelial cells (HUVECs) with T2D-CLI BM-CD34+cells resulted in a lower 

number of branches compared with the coculture of HUVECs and control BM-CD34+ cells 

(Figure 1C). A marked decrease in endothelial network formation was also observed when 

incubating HUVECs with T2D-CLI BM-CD34+ cell-derived CCM or EVs (Figure 1C). These 

data demonstrate that BM-CD34+ cells from T2D-CLI patients have reduced viability and can 

transfer destabilizing signals to endothelial cells through factors secreted as soluble molecules 

or packaged in EVs.  

MiR signature in BM-CD34+ cells 

Diabetes influences the expression of several miRs in hematopoietic cells.11-13 An unbiased 

miR profiling of CD34+ cells isolated from the BM of controls (N=6) and T2D patients with (N=6) 

or without CLI (N=7) identified a suppressive effect of T2D on the quantity of expressed miRs 

(Supplemental Figure 2A&B), which might be attributable to the downregulation of Dicer 

(Supplemental Figure 2C&D), an endoribonuclease involved in miRNA maturation, as also 

described by others18. 

Supplemental Table 8 shows that 56 miRs were commonly expressed in the three 

groups. Moreover, two sets of 11 different miRs were shared by controls and T2D-CLI patients 

or controls and T2D, respectively. Of those not shared, 49 were unique to controls and 1, 

namely miR-146a, to T2D-CLI, whereas none was exclusive to T2D. As shown in 

Supplemental Table 9, 18 miRs were differentially expressed in cells from T2D subjects, with 

or without CLI, compared with controls, with two of them, miR-21 and miR-30e, being shared 

by the two T2D groups. The heatmap diagram in Figure 2A indicates a marked separation of 

miR expression in T2D-CLI compared with controls, while T2D values were spread between 

controls and T2D-CLI. Among the miRs that showed a differential expression between T2D-

CLI and controls, we studied a set of 6 miRs (miR-125a, miR-222, let-7e, miR-93, miR-21, and 

miR-30e) known to control cell survival, differentiation, hematopoiesis, and angiogenesis 
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(Supplemental Table 10). To validate the profiling results, we performed single PCR analyses 

for the 6 miRs of interest on BM-CD34+ cells isolated from a new set of donors (controls, N=5; 

T2D, N=4; T2D-CLI, N=4) using an Applied Biosystem platform and normalizing miR 

expression to U6snoRNA, which showed a stable expression among the 3 groups. Three miRs 

from the set of choice, miR-125a, miR-21, and miR-30e, were significantly modulated in the 

new cohort (Figure 2B).  

Downregulation of miR-21 associated with reciprocal changes in its target PDCD4 

MiR-21, one of the most highly expressed miRs in mammalian cells, is modulated in 

cardiovascular disease.19-23 However, little is known regarding the expression of miR-21 in 

hematopoietic progenitor cells. Data of RT-PCR confirmed the downregulation of mature miR-

21 in sorted T2D-CLI BM-CD34+ cells (Figure 2Ci), whereas the levels of the corresponding 

pri-miR were similar to controls (data not shown).  MiR-21 was also found in CD34+ cell-derived 

CCMs and EVs, but no difference was seen when comparing T2D-CLI patients and controls 

(Figure 2Ci). Interestingly, miR-21 levels were decreased in plasma and EVs isolated from the 

PB of T2D-CLI patients (Figure 2 Cii). 

Long ncRNAs can act as miR sponges, thereby interfering with regulation of miR targets. 

We investigated the expression of several long ncRNAs reportedly implicated miR-21 

modulation 24-28. As shown in Figure 2Ci, TALNEC2 was upregulated in T2D-CLI BM-CD34+ 

cells and respective CCM; TUG1 was decreased in cells and increased in the CCM; MEG3 

was not altered; and TCONS was downregulated in CCM. These data suggest that TALNEC2 

could inhibit miR-21 at intracellular level, and, together with TUG1, at extracellular level. 

Moreover, all the studied sponges were upregulated either in plasma, EVs, or both, suggesting 

they may synergize in inhibiting miR-21 in the circulation (Figure 2Cii). 

The pro-apoptotic factor PDCD4 is a validated target of miR-21 19. In line with the miR-21 

downregulation, we found higher PDCD4 mRNA levels in T2D-CLI BM-CD34+ cells (Figure 

2D). Likewise, in-situ immunohistochemistry confirmed the higher expression of PDCD4 in the 
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BM (Figure 2E). Altogether, these data point at a novel molecular mechanism involving the 

downregulation of miR-21 and induction of PDCD4 in T2D-CLI CD34+ cells. 

Migration toward SDF-1 enriches a population of CD34+/CXCR+/PDCD4+ cells 

CD34+CXCR4+ cells represented a small fraction (1.5±0.2%) of the total CD34+ cell population 

in PB of T2D-CLI patients. PDCD4 was more abundant in the CD34+CXCR4+ (77.9±0.4%) than 

in the CD34+CXCR4- cell fraction (5.8±0.2%). Moreover, SDF-1-stimulated migration of PB-

MNCs resulted in an enrichment of cells expressing both CXCR4 and PDCD4 in the migrated 

fraction (Supplemental Figure 3).  

Silencing miR-21 in control BM-CD34+ cells recapitulates the negative features of T2D-

CLI CD34+ cells 

Next, we sought confirmation of a direct link between T2D-CLI-associated miR-21 

downregulation and BM-CD34+ cell dysfunction. To this aim, we silenced miR-21 in control BM-

CD34+ cells using an anti-miR strategy. The effective miR-21 knock-down (Figure 3A) was 

associated with PDCD4 upregulation (Figure 3B), and increased apoptotic events compared 

with SCR-treated cells (Figure 3C). Moreover, miR-21 silencing conferred anti-angiogenic 

properties to CD34+ cells as well as to the CD34+ cell-derived CCM and EVs (Figure 3D).   

Transfer of pro-apoptotic miR-21/PDCD4 signaling to endothelial cells  

We next assessed if the negative crosstalk between CD34+ cells and endothelial cells involves 

the direct transfer of miR-21 or PDCD4 or is mediated by associated factors. To this purpose, 

using a protocol illustrated in Figure 3E, we measured the relative expression of miR-21 and 

PDCD4 in HUVECs exposed to the CCM from control CD34+ cells (either naïve or transfected 

with anti-miR-21 or SCR) or to the CCM from T2D-CLI CD34+ cells. Interestingly, plotting the 

expressional values of miR-21 and PDCD4 from the 4 groups demonstrated an inverse 

relationship between the miR and its target (Figure 3E). This indicates that modulation of the 

miR-21/PDCD4 duo in BM-CD34+ cells can induce similar expressional changes in the 

exposed endothelial cells. Next, employing a protocol illustrated in Figure 3F, we 
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demonstrated that PDCD4 silencing in HUVECs remarkably reduced the apoptosis caused by 

the exposure to the CCM from T2D-CLI CD34+ cells (Figure 3F). A dedicated ELISA could not 

detect PDCD4 in the CD34+ cells-derived CCM. This data suggests that CD34+ cells induce 

apoptosis in HUVECs through different paracrine mechanisms.  

Implication of TUG1 and oxidative stress  

The presence of miR-21 sponges in the CCM from T2D-CLI CD34+ cells suggested they could 

act paracrinally to inhibit miR-21 in endothelial cells. Therefore, we assessed TALNEC2, 

TUG1, MEG3, and TCONS in HUVECs either naïve or exposed to the CCM from control or 

T2D-CLI CD34+ cells. Results confirmed the downregulation of miR-21 and the induction of 

PDCD4 by the T2D-CLI CCM and demonstrated TUG1 was the only upregulated long ncRNA 

in conditioned HUVECs (Figure 4A).   

Reciprocal interactions exist between long ncRNAs, and ROS production and 

scavenging29. Relevant to our study, H2O2 and hypoxia reportedly induced TUG1 in 

cardiomyocytes, thereby increasing ROS production and apoptosis30. Hence, we hypothesized 

that oxidative stress could be involved in the transfer of pro-apoptotic signaling to endothelial 

cells. This was confirmed by multiple evidences: (1) T2-CLI BM-CD34+ cells showed elevated 

in situ 4-HNE staining, a marker of oxidative damage and lipid peroxidation (Figure 4B), (2) 

treatment of HUVECs with increasing H2O2 concentrations induced miR-21 inhibition and 

PDCD4 upregulation (Figure 4C), and (3) ROS scavenging with N-acetylcysteine (NAC) 

blocked the miR-21 downregulation in HUVECs exposed to the CCM from T2D-CLI CD34+ 

cells (Figure 4Di) or to the CCM from anti-miR-21-transfected control CD34+ cells (Figure 

4Dii). In parallel, NAC abrogated the induction of PDCD4 by the CCMs (Figure 4Diii and 

Figure 4Div). It also counteracted the apoptosis of HUVECs exposed to the CCM from T2D-

CLI CD34+ cells (Figure 4Ei) but was unable to prevent the apoptosis of HUVECs exposed to 

the CCM from miR-21-silenced CD34+ cells (Figure 4Eii). These findings indicate that ROS in 

association with TUG1 is the likely mediator for transmission of an altered miR-21/PDCD4 
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balance from T2D-CLI CD34+ cells to endothelial cells (Figure 4F). They also point to the 

possibility that the total disruption of miR-21 impacts on additional pro-apoptotic inducers that 

are independent of ROS.  
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Conclusions 
 

In an extended follow-up of T2D-CLI, CD34+ cell migration maintained a predictive value at 6 

years post-angioplasty. In these critical patients, CD34 cells responsive to SDF-1 

chemoattraction exert negative effects on the vascular endothelium through a mechanism 

involving miR-21 inhibition and PDCD4 upregulation.  

In the high-migratory group, cardiovascular mortality accrued during the first years of 

follow-up, with the difference vs. the low-migratory group remaining unchanged later. Most 

patients with the highest cardiovascular risk had already died at that stage, resulting in a 

reduction of the target for prediction. Moreover, mortality for other causes can act as a strong 

opposer in an elderly population. Nonetheless, the biomarker maintained its validity in a 

multivariable analysis accounting for the age of participants.  

Reduction and dysfunction of stem/progenitor cells is associated with and predicts adverse 

outcomes of diabetic complications.8 Thus, at first glance, our data appear counterintuitive. We 

hypothesized that sub-fractions of BM-CD34+ cells could become anti-angiogenic and pro-

apoptotic due to the adverse metabolic milieu they are exposed to in the BM and circulation. 

Once entered in the circulation, these cells may convey pathogenic signals to the vascular 

endothelium, thereby accelerating ischemic complications. 

 Accumulating evidence indicates that CLI aggravates the remodeling effect of T2D on 

the BM niche and induces a senescent phenotype in CD34+ cells, which may be, at least in 

part, attributable to alteration in miR biogenesis, expression, and degradation13, 18. The 

observed reduction of expressed miRs in T2D BM-CD34+ cells may be attributable to a block 

in the miR processing, as suggested by Dicer downregulation. Among differentially expressed 

miRs, we focused on miR-21, because of its involvement in cardiovascular disease 31-34 MiR-

21 downregulation in T2D-CLI CD34+ cells was associated with upregulation of the 

programmed cell death protein PDCD4, a validated inhibitory target of miR-21, and with 

alterations in viability and proangiogenic activity of CD34+ cells. Silencing miR-21 reproduced 
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the same phenotype in CD34+ cells of subjects without diabetes. Moreover, data of an SDF-1 

migration assay on T2D-CLI PB-MNCs demonstrated the high co-expression of PDCD4 and 

CXCR4 within the migrated CD34+ cell fraction. This finding provides a key of interpretation for 

the link between CD34+CXCR4+ cell migration and cardiovascular death in the follow-up study 

on T2D-CLI patients.  

 MiR‐21 is the most abundant miRNA in macrophages and its downregulation has been 

associated with induction of atherosclerosis, plaque necrosis, and vascular inflammation 35. 

Silencing of miR‐21 in macrophages increases the expression of mitogen‐activated protein 

kinase kinase 3, thereby leading to the activation of the p38‐CHOP and cJNK signaling 

pathways and triggering macrophage apoptosis 35. Additionally, miR‐21-silenced macrophages 

are unable to remove apoptotic cells, which contributes in delaying the resolution of 

inflammation35. The miR-21 inhibitory target PDCD4 acts as a tumor suppressor protein 

involved in programmed cell death. Recent cardiovascular research has shown that PDCD4 is 

upregulated in coronary arteries of atherosclerotic rats, where it participates in the formation of 

coronary plaques, through destabilization of vascular smooth muscle cells and promotion of 

inflammatory chemokines 36. Nonetheless, the regulation of miR-21/PDCD4 interaction is only 

partially known. Prostaglandins reportedly act as inducers of miR-21 expression and 

suppressors of PDCD4 protein; whereas, cyclooxygenase 2 inhibitors produce opposite 

effects37. Moreover, several long ncRNAs can act as sponges for miR-21.24-28 For instance, 

miR-21 is a direct target of MEG3, and, in hypoxic vascular cells, MEG3 interferes with miR-

21 modulation of PTEN resulting in cell proliferation and migration.27 Likewise, studies on H9c2 

cells showed that TALNEC2 modulates miR-21/PDCD4expression under hypoxia, aggravating 

its consequences.25 TCONS is an endothelium-associated long ncRNA involved in plaque 

progression. Binding of miR-21 to TCONS reduces its expression and, for this reason, was 

proposed as potential treatment to improve endothelial dysfunction and plaque stabilization 28. 

Finally, TUG1 was proposed to interact miR-21 and to modulate endothelial cell apoptosis 38. 
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Both oxidative stress and ischemia induce the sponging activity of TUG1, thereby stimulating 

intracellular ROS accumulation, and aggravating the ischemic injury30. Interestingly, we found 

that the above long ncRNAs were modulated in CD34+ cells and PB of T2D-CLI patients. 

Moreover, exposure of HUVECs to the CCM of T2D-CLI CD34+ cells induced the expression 

of TUG1 and PDCD4, while suppressing miR-21. This mechanism may be ROS dependent 

when considering that the inhibition exerted by NAC resulted in improved cell survival. We 

propose that CD34+ cells recruited from PB may exert a sponge-dependent inhibition of the 

interaction between miR-21 and PDCD4, thereby sustaining vascular damage.  Elevated PB 

levels of miR-21 sponges could strengthen this cellular crosstalk. 

These findings have clinical and therapeutic implications, but also raise new questions. 

Currently, long-term prognosis of CLI is based on clinical parameters39. Our study suggests 

that the assessment of CD34+ cells profile may help identify high-risk patients for whom more 

aggressive treatments are necessary. Although more sophisticated than traditional biomarkers, 

cellular biomarkers can be very useful in helping us understand the complex interplay among 

cellular systems in inducing diabetic vascular disease. In this respect, circulating cells offer a 

more feasible means for molecular profiling than BM cells, also considering the variability in 

cell composition of different BM sites. This last aspect represents a limitation of our study, as 

BM samples were obtained from the femoral head or iliac crest aspirates with the intention of 

not interfering with clinical practice and patients’ care.  

PDCD4 might represent a valuable biomarker and therapeutic target in ischemic disease. 

The latter assumption is indirectly supported by the established benefit of prostaglandin E1, an 

inhibitor of PDCD4, in the treatment of limb ischemia. Novel treatments targeting upstream 

modulators of PDCD4, including miR-21 and related sponges, might be also considered for 

treatment of CLI. Finally, autologous BM-CD34+ cells are currently used in clinical trials of CLI 

patients. Our study calls for caution in using CD34+ cells that carry a proapoptotic and 

antiangiogenic molecular signature, e.g. low miR-21/high PDCD4. New investigation is needed 
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to determine if this signature can be exploited to increase the safety and efficacy of the cell 

therapy approach.  
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Figure legends 

Figure 1. Migration of CD34
+
 cells toward SDF-1 predicts cardiovascular mortality and 

is associated with reduced cell viability and angiogenic capacity. A) Left, schematic view 

of the in vitro migration assay; right, cumulative incidence of mortality for cardiovascular causes 

during the 6-year follow-up in groups categorized according to the median value of 

CD45
dim

/CD34
+
/CXCR4

+
/KDR

+
 migrated toward SDF-1. Red line represents the incidence in 

the group with migration value below the median value, while the blue line indicates the 

cumulative incidence in the group with migration value equal or above the median. P-value for 

the difference between the two curves =0.0012. B) Typical flow cytometry displacement curves 

and bar graph showing the percent of bone marrow (BM)-derived CD34
+
 cells expressing 

AnnexinV in controls (ctr) and patients with type 2 diabetes with critical limb ischemia (T2D-

CLI) (N=3 in each group). D) Representative microscopy images of the Matrigel assay (bar = 

50μm) and bar graphs showing fold changes in the average number of network branches made 

by human umbilical vein endothelial cells (HUVECs) in the presence or the absence of CD34+ 

cells (coculture 1:1), CD34+ cell-derived conditioned medium (CCM), or CD34+ cell-derived 

extracellular vesiscles (EVs) from controls (empty bars, N=5) or patients with T2D-CLI (black 

bars, N=4). Values are means ± SE; *p<0.05 vs. ctr. 

 

Figure 2. MicroRNA profiling of bone marrow-derived CD34+ cells unveils the modulation 

of microRNA-21 and its target PDCD4 in patients with type 2 diabetes and critical limb 

ischemia. A) Heat map showing that bone marrow (BM)-CD34+ cells isolated from subjects 

with type 2 diabetes either uncomplicated (T2D) or complicated by critical limb ischemia (T2D-

CLI) bear a specific microRNA (miR) profile. Quantitative RT-PCR data, N=6 donor/group.  B) 

Bar graph showing the average relative expression of a group of 6 miRs assessed in a 

validation study on BM-CD34+ cells obtained from donors different from those used in profiling 
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(ctr: N=5, with T2D: N=4, with T2D-CLI N=4). Quantitative RT-PCR. *p<0.05 vs. ctr, #p<0.05 

vs. with T2D. C) (i) Relative expression of mature miR-21 and miR-21 sponges in BM-derived 

CD34+  cells (N=4), CD34+ cell-derived conditioned medium (CCM) (ctr: N=8, T2D-CLI: N=7) 

and isolated extracellular vesicles (EVs) (ctr: N=8, T2D-CLI: N=7) from new donors. (ii) Relative 

expression of mature miR-21 and miR-21 sponges in plasma (N=9-10) and EVs (N=4-5). 

Quantitative RT-PCR. *p<0.05, *p<0.01, and ***p<0.001 vs. ctr. D) PDCD4 mRNA modulation 

in T2D-CLI BM-CD34+ cells. Quantitative RT-PCR (N=8) *p<0.05 vs. ctr. E) (i) Bar graph show 

the frequency of PDCD4 positive cells over total number of hematoxylin positive nuclei in the 

BM of ctr and T2D-CLI subjects (N=3) *p<0.05 vs. ctr. (ii and iii) Representative 

microphotographs of BM using immunohistochemistry (upper images, scale bar 20µm), and 

immunofluorescent microscopy (lower images, scale bar 10µm). White arrowheads point at 

CD34+ cells.  

 

Figure 3. Inhibition of miR-21 in BM-CD34+ cells from control subjects mimics diabetes-

associated dysfunction. Silencing miR-21 in CD34+ cells resulted in A) miR-21 reduction (RT-

PCR, N=3) and B) PDCD4 upregulation (RT-PCR, N=6). *p<0.05 vs. scramble (SCR). C) miR-

21 inhibition is associated with increased apoptosis of BM-CD34+ cells, bar graph of Annexin 

V+/7AAD- cells assessed using flow cytometry. (N=7). D) Anti-angiogenic action of miR-21-

silenced BM-CD34+ cells (N=4), cell-derived conditioned medium (CCM, N=3) and extracellular 

vesicles (EVs, N=3). Human umbilcal vein endothelial cells (HUVECs) networking analysis on 

Matrigel. Scale bar 50µm. E) Left, schematic view of the experimental setting; right, negative 

correlation between PDCD4 and miR-21 in HUVECs treated with the CCM from CD34+ cells. 

The graph reports data of average PDCD4 protein levels (as percentage of positive HUVECs 

identified using immunofluorescence microscopy) and average miR-21 expressional levels (by 

PCR analysis). Colored circles indicate the source of CCMs. F) Upper panel, scheme of the 

experiment; lower panels, bar graph shows the percentage of Annexin V+/7AAD- HUVECs 
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either SCR- or siPDCD4 transfected after treatment with CD34+-CCM. Flow cytometry 

analysis, N=3 donors/condition.  

 

Figure 4. Exposure of endothelial cells to the conditioned medium of  CD34+ cells from 

patients with type 2 diabetes and critical limb ischemia induces a modulation of the miR-

21/PDCD4 axis through a mechanism involving reactive oxygen species and the miR-21 

sponge TUG1. A) Bar graph showing the average relative expression of miR-21, PDCD4, and 

indicated long ncRNA in human umbilical vein endothelial cells (HUVECs) either not treated 

(NT) or treated with the conditioned media (CCM) from bone marrow (BM)-derived CD34+ cells 

of controls (ctr) or type 2 diabetes+critical limb ischemia patients (T2D-CLI) (N=4 donors, 

*p<0.05 vs. ctr CCM. B) In situ detection of reactive oxygen species (ROS) levels assessed by 

measuring 4-Hydroxy-2-Nonenal (4-HNE) in BM-CD34+ cells. Representative images of 

immunofluorescence staining (IF) and bar graph of average data (ctr: N=5 and T2D-CLI: N=6) 

*p<0.05 . White arrowheads in IF microphotographs point at CD34+ cells.  Scale bar: 10µm. C) 

Bar graph showing the relative expression of miR-21 (i) and PDCD4 mRNA (ii) (RT-PCR, N=4) 

and PDCD4 protein (iii) (immunofluorescence staining, NT: N=3 and treated: N=5) in HUVECs 

exposed to H2O2 at the indicated concentrations. *p<0.05 vs. NT. D) Antioxidant action of N-

acetyl-L-cysteine (NAC) results in prevention of miR-21 inhibition in HUVECs that were 

exposed to the CCM of CD34+ cells from patients with T2D-CLI (i) or to the CCM of miR-21-

silenced CD34+ cells from ctr (ii). Bar graphs with average RT-PCR data show there was no 

difference with respective CCM from ctr CD34+ cells or CCM from ctr CD34+ cells transfected 

with scramble siRNA (SCR). (iii) Percentage of PDCD4 positive HUVECs exposed to the CCM 

of CD34+ cells from ctr or T2D-CLI patients with (+) or without (-) NAC; *p<0.05 as indicated 

by the lines. (iv) Percentage of PDCD4 positive HUVECs exposed to the CCM of ctr CD34+ 

cells, transfected with either SCR or anti-miR-21, with (+) or without (-) NAC; *p<0.05 and 

**p<0.01 as indicated by the lines. N=4 in each group for all the experiments. E) NAC 
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scavenging of ROS protects HUVECs from CD34-CCM-induced apotosis. Conditions in (i) and 

(ii) are the same of panel E (iii) and (iv), respectively. Bar graphs of average caspase 3/7 activity 

that was measured using ELISA; *p<0.05 and **p<0.01 as indicated by the lines (N=3). E) 

Diagram of propesed molecular interaction between CD34+ cell and endothelial cells, involving 

the participation of ROS and miR-21 sponge TUG1. Section of CD34+ cell on the left of dotted 

line shows the inhibition of proapoptotic PDCD4 by miR-21 leading to prosurvival signalling to 

the vascular endothelium. Section of CD34+ cell on the right illustrating the interference of miR-

21 sponge on the inhibitory target, which result in activation of pro-apoptotic signalling in 

vascular endothelium. 

 

 


