15,825 research outputs found
Regular Moebius transformations of the space of quaternions
Let H be the real algebra of quaternions. The notion of regular function of a
quaternionic variable recently presented by G. Gentili and D. C. Struppa
developed into a quite rich theory. Several properties of regular quaternionic
functions are analogous to those of holomorphic functions of one complex
variable, although the diversity of the quaternionic setting introduces new
phenomena. This paper studies regular quaternionic transformations. We first
find a quaternionic analog to the Casorati-Weierstrass theorem and prove that
all regular injective functions from H to itself are affine. In particular, the
group Aut(H) of biregular functions on H coincides with the group of regular
affine transformations. Inspired by the classical quaternionic linear
fractional transformations, we define the regular fractional transformations.
We then show that each regular injective function from the Alexandroff
compactification of H to itself is a regular fractional transformation.
Finally, we study regular Moebius transformations, which map the unit ball B
onto itself. All regular bijections from B to itself prove to be regular
Moebius transformations.Comment: 12 page
Thermodynamics of beta-amyloid fibril formation
Amyloid fibers are aggregates of proteins. They are built out of a peptide
called --amyloid (A) containing between 41 and 43 residues,
produced by the action of an enzyme which cleaves a much larger protein known
as the Amyloid Precursor Protein (APP). X-ray diffraction experiments have
shown that these fibrils are rich in --structures, whereas the shape of
the peptide displays an --helix structure within the APP in its
biologically active conformation. A realistic model of fibril formation is
developed based on the seventeen residues A12--28 amyloid peptide, which
has been shown to form fibrils structurally similar to those of the whole
A peptide. With the help of physical arguments and in keeping with
experimental findings, the A12--28 monomer is assumed to be in four
possible states (i.e., native helix conformation, --hairpin, globular
low--energy state and unfolded state). Making use of these monomeric states,
oligomers (dimers, tertramers and octamers) were constructed. With the help of
short, detailed Molecular Dynamics (MD) calculations of the three monomers and
of a variety of oligomers, energies for these structures were obtained. Making
use of these results within the framework of a simple yet realistic model to
describe the entropic terms associated with the variety of amyloid
conformations, a phase diagram can be calculated of the whole many--body
system, leading to a thermodynamical picture in overall agreement with the
experimental findings. In particular, the existence of micellar metastable
states seem to be a key issue to determine the thermodynamical properties of
the system
k-Dirac operator and parabolic geometries
The principal group of a Klein geometry has canonical left action on the
homogeneous space of the geometry and this action induces action on the spaces
of sections of vector bundles over the homogeneous space. This paper is about
construction of differential operators invariant with respect to the induced
action of the principal group of a particular type of parabolic geometry. These
operators form sequences which are related to the minimal resolutions of the
k-Dirac operators studied in Clifford analysis
Brazilian Atlantic Forest Lato Sensu: The Most Ancient Brazilian Forest, And A Biodiversity Hotspot, Is Highly Threatened By Climate Change.
After 500 years of exploitation and destruction, the Brazilian Atlantic Forest has been reduced to less the 8% of its original cover, and climate change may pose a new threat to the remnants of this biodiversity hotspot. In this study we used modelling techniques to determine present and future geographical distribution of 38 species of trees that are typical of the Brazilian Atlantic Forest (Mata Atlântica), considering two global warming scenarios. The optimistic scenario, based in a 0.5% increase in the concentration of CO2 in the atmosphere, predicts an increase of up to 2 °C in the Earth's average temperature; in the pessimistic scenario, based on a 1% increase in the concentration of CO2 in the atmosphere, temperature increase may reach 4 °C. Using these parameters, the occurrence points of the studied species registered in literature, the Genetic Algorithm for Rule-set Predictions/GARP and Maximum entropy modeling of species geographic distributions/MaxEnt we developed models of present and future possible occurrence of each species, considering Earth's mean temperature by 2050 with the optimistic and the pessimistic scenarios of CO2 emission. The results obtained show an alarming reduction in the area of possible occurrence of the species studied, as well as a shift towards southern areas of Brazil. Using GARP, on average, in the optimistic scenario this reduction is of 25% while in the pessimistic scenario it reaches 50%, and the species that will suffer the worst reduction in their possible area of occurrence are: Euterpe edulis, Mollinedia schottiana, Virola bicuhyba, Inga sessilis and Vochysia magnifica. Using MaxEnt, on average, in the optimistic scenario the reduction will be of 20% while in the pessimistic scenario it reaches 30%, and the species that will suffer the worst reduction are: Hyeronima alchorneoides, Schefflera angustissima, Andira fraxinifolia and the species of Myrtaceae studied.70697-70
Understanding the determinants of stability and folding of small globular proteins from their energetics
The results of minimal model calculations suggest that the stability and the
kinetic accessibility of the native state of small globular proteins are
controlled by few "hot" sites. By mean of molecular dynamics simulations around
the native conformation, which simulate the protein and the surrounding solvent
at full--atom level, we generate an energetic map of the equilibrium state of
the protein and simplify it with an Eigenvalue decomposition. The components of
the Eigenvector associated with the lowest Eigenvalue indicate which are the
"hot" sites responsible for the stability and for the fast folding of the
protein. Comparison of these predictions with the results of mutatgenesis
experiments, performed for five small proteins, provide an excellent agreement
XMM-Newton and Chandra observations of G272.2-3.2. Evidence of stellar ejecta in the central region
We aim to study the spatial distribution of the physical and chemical
properties of the X-ray emitting plasma of the supernova remnant G272.2-3.2, in
order to get important constraints on its ionization stage, on the progenitor
supernova explosion, and the age of the remnant. We report combined XMM-Newton
and Chandra images, median photon energy map, silicon and sulfur equivalent
width maps, and a spatially resolved spectral analysis for a set of regions of
the remnant. Complementary radio and H{\alpha} observations, available in the
literature, are also used to study the multi-wavelength connection of all
detected emissions. The X-ray morphology of the remnant displays an overall
structure with an almost circular appearance, a centrally brightened hard
region, with a peculiar elongated hard structure oriented along the
northwest-southeast direction of the central part. The X-ray spectral study of
the regions shows distinct K{\alpha} emission-line features of metal elements,
confirming the thermal origin of the emission. The X-ray spectra are well
represented by an absorbed VNEI thermal plasma model, which produces elevated
abundances of Si, S, and Fe in the circular central region, typical of ejecta
material. The values of abundances found in the central region of the SNR favor
a Type Ia progenitor for this remnant. The outer region shows abundances below
the solar value, as expected if the emission arises from the shocked ISM. The
relatively low ionization timescales suggests non-equilibrium ionization. We
identify the location of the contact discontinuity. Its distance to the outer
shock is higher than expected for expansion in a uniform media, what suggests
that the remnant spent most of its time in a more dense medium.Comment: 9 pages, 7 figures. Accepted for publication in A&
- …