research

k-Dirac operator and parabolic geometries

Abstract

The principal group of a Klein geometry has canonical left action on the homogeneous space of the geometry and this action induces action on the spaces of sections of vector bundles over the homogeneous space. This paper is about construction of differential operators invariant with respect to the induced action of the principal group of a particular type of parabolic geometry. These operators form sequences which are related to the minimal resolutions of the k-Dirac operators studied in Clifford analysis

    Similar works

    Full text

    thumbnail-image

    Available Versions