238 research outputs found

    Combined effects of pressure and Ru substitution on BaFe2As2

    Get PDF
    The ab-plane resistivity of Ba(Fe1-xRux)2As2 (x = 0.00, 0.09, 0.16, 0.21, and 0.28) was studied under nearly hydrostatic pressures, up to 7.4 GPa, in order to explore the T-P phase diagram and to compare the combined effects of iso-electronic Ru substitution and pressure. The parent compound BaFe2As2 exhibits a structural/magnetic phase transition near 134 K. At ambient pressure, progressively increasing Ru concentration suppresses this phase transition to lower temperatures at the approximate rate of ~5 K/% Ru and is correlated with the emergence of superconductivity. By applying pressure to this system, a similar behavior is seen for each concentration: the structural/magnetic phase transition is further suppressed and superconductivity induced and ultimately, for larger x Ru and P, suppressed. A detailed comparison of the T-P phase diagrams for all Ru concentrations shows that 3 GPa of pressure is roughly equivalent to 10% Ru substitution. Furthermore, due to the sensitivity of Ba(Fe1-xRux)2As2 to pressure conditions, the melting of the liquid media, 4 : 6 light mineral oil : n-pentane and 1 : 1 iso-pentane : n-pentane, used in this study could be readily seen in the resistivity measurements. This feature was used to determine the freezing curves for these media and infer their room temperature, hydrostatic limits: 3.5 and 6.5 GPa, respectively.Comment: 27 pages, 19 figure

    Cardiac arrest and COVID-19: inflammation, angiotensin-converting enzyme 2, and the destabilization of non-significant coronary artery disease-a case report.

    Get PDF
    The new β-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears to exhibit cardiovascular pathogenicity through use of angiotensin-converting enzyme 2 (ACE2) for cell entry and the development of a major systemic inflammation. Furthermore, cardiovascular comorbidities increase susceptibility to SARS-CoV-2 infection and the development of a severe form of COronaVIrus Disease 2019 (COVID-19). We describe the case of a COVID-19 patient whose inaugural presentation was a refractory cardiac arrest secondary to the destabilization of known, non-significant coronary artery disease. Patient was supported by venoarterial extracorporeal life support. After 12 h of support, cardiac function remained stable on low vasopressor support but the patient remained in a coma and brainstem death was diagnosed. Myocardial injury is frequently seen among critically unwell COVID-19 patients and increases the risk of mortality. This case illustrates several potential mechanisms that are thought to drive the cardiac complications seen in COVID-19. We present the potential role of inflammation and ACE2 in the pathophysiology of COVID-19

    Prevalence and risk factors of lactic acidosis in children with acute moderate and severe asthma, a prospective observational study.

    Get PDF
    Lactic acidosis is a common complication of status asthmaticus in adults. However, data is sparse in children. The aim of this study was to describe the prevalence and risk factors for lactic acidosis in children hospitalised for acute moderate or severe asthma. A total of 154 children 2-17 years of age were enrolled in a prospective observational study conducted in a tertiary hospital. All had capillary blood gas assessment 4 h after the first dose of salbutamol in hospital. The primary endpoint was the prevalence of lactic acidosis. Potential contributing factors such as age, sex, BMI, initial degree of asthma severity, type of salbutamol administration (nebuliser or inhaler), steroids, ipratropium bromide, and glucose-containing maintenance fluid represented secondary endpoints. All in all, 87% of patients had hyperlactatemia (lactate concentration > 2.2 mmol/l). Lactic acidosis (lactate concentration > 5 mmol/l and anion gap ≥ 16 mmol/l) was observed in 26%. In multivariate analysis, age more than 6 years (OR = 2.8, 95% CI 1.2-6.6), glycemia above 11 mmol/l (OR = 3.2 95% CI 1.4-7.4), and salbutamol administered by nebuliser (OR = 10, 95% CI 2.7-47) were identified as risk factors for lactic acidosis in children with moderate or severe asthma.Conclusion: Lactic acidosis is a frequent and early complication of acute moderate or severe asthma in children. What is Known: • Lactic acidosis during acute asthma is associated with b2-mimetics administration. • Salbutamol-related lactic acidosis is self-limited but important to recognise, as compensatory hyperventilation of lactic acidosis can be mistaken for respiratory worsening and lead to inappropriate supplemental bronchodilator administration. What is New: • Lactic acidosis is a frequent complication of acute asthma in the paediatric population. • Age older than 6 years, hyperglycaemia, and nebulised salbutamol are risk factors for lactic acidosis during asthma

    Simultaneous measurements of nuclear spin heat capacity, temperature and relaxation in GaAs microstructures

    Full text link
    Heat capacity of the nuclear spin system (NSS) in GaAs-based microstructures has been shown to be much greater than expected from dipolar coupling between nuclei, thus limiting the efficiency of NSS cooling by adiabatic demagnetization. It was suggested that quadrupole interaction induced by some small residual strain could provide this additional reservoir for the heat storage. We check and validate this hypothesis by combining nuclear spin relaxation measurements with adiabatic remagnetization and nuclear magnetic resonance experiments, using electron spin noise spectroscopy as a unique tool for detection of nuclear magnetization. Our results confirm and quantify the role of the quadrupole splitting in the heat storage within NSS and provide additional insight into fundamental, but still actively debated relation between a mechanical strain and the resulting electric field gradients in GaAs.Comment: 11 pages, 4 figures, 1 tabl

    High shock release in ultrafast laser irradiated metals: Scenario for material ejection

    Get PDF
    We present one-dimensional numerical simulations describing the behavior of solid matter exposed to subpicosecond near infrared pulsed laser radiation. We point out to the role of strong isochoric heating as a mechanism for producing highly non-equilibrium thermodynamic states. In the case of metals, the conditions of material ejection from the surface are discussed in a hydrodynamic context, allowing correlation of the thermodynamic features with ablation mechanisms. A convenient synthetic representation of the thermodynamic processes is presented, emphasizing different competitive pathways of material ejection. Based on the study of the relaxation and cooling processes which constrain the system to follow original thermodynamic paths, we establish that the metal surface can exhibit several kinds of phase evolution which can result in phase explosion or fragmentation. An estimation of the amount of material exceeding the specific energy required for melting is reported for copper and aluminum and a theoretical value of the limit-size of the recast material after ultrashort laser irradiation is determined. Ablation by mechanical fragmentation is also analysed and compared to experimental data for aluminum subjected to high tensile pressures and ultrafast loading rates. Spallation is expected to occur at the rear surface of the aluminum foils and a comparison with simulation results can determine a spall strength value related to high strain rates

    Evaluación del comportamiento a macro-fisuración por fatiga de mezclas bituminosas modificadas con polvo de neumático

    Get PDF
    The use of crumb rubber modified bitumen (CRMB) in asphalt mixes is a road engineering technology that has become increasingly important in recent years. Given the many economic and environmental benefits of this type of binder, the goal is to give CRMB the same level of performance as conventional polymermodified bitumen. The appearance and propagation of cracks due to fatigue phenomena is one of the most common distresses affecting road pavements. Since crumb rubber enhances the mechanical properties of asphalt mixes, it can provide a viable solution for fatigue cracking. This paper presents the results of a comparative analysis of the fatigue-cracking behavior of asphalt mixtures manufactured with crumb rubber modified bitumen and polymer-modified bitumen.El empleo de betunes modificados con polvo de neumático usado en la fabricación de mezclas bituminosas es una de las técnicas que mayor auge está teniendo en los últimos años en la ingeniería de carreteras. Dadas sus grandes ventajas económicas y ambientales, este tipo de ligantes pretende conseguir prestaciones similares a la de los betunes modificados con polímeros utilizados habitualmente. La aparición de fisuras debido a fenómenos de fatiga es una de las patologías más comunes en firmes de carretera. Debido a las mejoras de las propiedades mecánicas del betún aportadas tras la incorporación de polvo de neumático, las mezclas fabricadas con estos ligantes se postulan como una posible solución a dicho problema. En este artículo se lleva a cabo un análisis comparativo del comportamiento a fisuración por fatiga realizado sobre mezclas bituminosas fabricadas con betún modificado con polvo de neumático y con polímeros.This research was carried out within the framework of the R + D + i project entitled Proyecto Integrado de Investigación, Desarrollo y Demostración de Tecnologías para la aplicación de neumáticos fuera de uso en firmes de carretera resistentes a la propagación de grietas (ref. IDI-20091076), funded by the Center for Industrial Technological Development (CDTI) of the Ministry of Science and Innovation in Spain

    Pre‐Eruptive Outgassing and Pressurization, and Post‐Fragmentation Bubble Nucleation, Recorded by Vesicles in Breadcrust Bombs From Vulcanian Activity at Guagua Pichincha Volcano, Ecuador

    Get PDF
    Breadcrust bombs formed during Vulcanian eruptions are assumed to originate from the shallow plug or dome. Their rim to core texture reflects the competition between cooling and degassing timescales, which results in a dense crust with isolated vesicles contrasting with a highly vesicular vesicle network in the interior. Due to relatively fast quenching, the crust can shed light on pre- and syn-eruptive conditions prior to or during fragmentation, whereas the interior allows us to explore post-fragmentation vesiculation. Investigation of pre- to post-fragmentation processes in breadcrust bombs from the 1999 Vulcanian activity at Guagua Pichincha, Ecuador, via 2D and 3D textural analysis reveals a complex vesiculation history, with multiple, spatially localized nucleation and growth events. Large vesicles (Type 1), present in low number density in the crust, are interpreted as pre-eruptive bubbles formed by outgassing and collapse of a permeable bubble network during ascent or stalling in the plug. Haloes of small, syn-fragmentation vesicles (Type 2), distributed about large vesicles, are formed by pressurization and enrichment of volatiles in these haloes. The nature of the pressurization process in the plug is discussed in light of seismicity and ground deformation signals, and previous textural and chemical studies. A third population (Type 3) of post-fragmentation small vesicles appears in the interior of the bomb, and growth and coalescence of Type 2 and 3 vesicles causes the transition from isolated to interconnected bubble network in the interior. We model the evolution of viscosity, bubble growth rate, diffusion timescales, bubble radius and porosity during fragmentation and cooling. These models reveal that thermal quenching dominates in the crust whereas the interior undergoes a viscosity quench caused by degassing, and that the transition from crust to interior corresponds to the onset of percolation and development of permeability in the bubble network

    Cavity-control of interlayer excitons in van der Waals heterostructures

    Get PDF
    Monolayer transition metal dichalcogenides integrated in optical microcavities host exciton-polaritons as a hallmark of the strong light-matter coupling regime. Analogous concepts for hybrid light-matter systems employing spatially indirect excitons with a permanent electric dipole moment in heterobilayer crystals promise realizations of exciton-polariton gases and condensates with inherent dipolar interactions. Here, we implement cavity-control of interlayer excitons in vertical MoSe2-WSe2 heterostructures. Our experiments demonstrate the Purcell effect for heterobilayer emission in cavity-modified photonic environments, and quantify the light-matter coupling strength of interlayer excitons. The results will facilitate further developments of dipolar exciton-polariton gases and condensates in hybrid cavity – van der Waals heterostructure systems
    corecore