The ab-plane resistivity of Ba(Fe1-xRux)2As2 (x = 0.00, 0.09, 0.16, 0.21, and
0.28) was studied under nearly hydrostatic pressures, up to 7.4 GPa, in order
to explore the T-P phase diagram and to compare the combined effects of
iso-electronic Ru substitution and pressure. The parent compound BaFe2As2
exhibits a structural/magnetic phase transition near 134 K. At ambient
pressure, progressively increasing Ru concentration suppresses this phase
transition to lower temperatures at the approximate rate of ~5 K/% Ru and is
correlated with the emergence of superconductivity. By applying pressure to
this system, a similar behavior is seen for each concentration: the
structural/magnetic phase transition is further suppressed and
superconductivity induced and ultimately, for larger x Ru and P, suppressed. A
detailed comparison of the T-P phase diagrams for all Ru concentrations shows
that 3 GPa of pressure is roughly equivalent to 10% Ru substitution.
Furthermore, due to the sensitivity of Ba(Fe1-xRux)2As2 to pressure conditions,
the melting of the liquid media, 4 : 6 light mineral oil : n-pentane and 1 : 1
iso-pentane : n-pentane, used in this study could be readily seen in the
resistivity measurements. This feature was used to determine the freezing
curves for these media and infer their room temperature, hydrostatic limits:
3.5 and 6.5 GPa, respectively.Comment: 27 pages, 19 figure