167 research outputs found

    Guest Molecule-Responsive Functional Calcium Phosphonate Frameworks for Tuned Proton Conductivity

    Get PDF
    We report the synthesis, structural characterization, and functionality of an open-framework hybrid that combines Ca2+ ions and the rigid polyfunctional ligand 5-(dihydroxyphosphoryl) isophthalic acid (PiPhtA). Ca-PiPhtA-I is obtained by slow crystallization at ambient conditions from acidic (pH≈3) aqueous solutions. It possesses a high water content (both Ca coordinated and in the lattice), and importantly, it exhibits water-filled 1D channels. At 75 °C, Ca-PiPhtA-I is partially dehydrated and exhibits a crystalline diffraction pattern that can be indexed in a monoclinic cell with parameters close to the pristine phase. Rietveld refinement was carried out for the sample heated at 75 °C, Ca-PiPhtA-II, using synchrotron powder X-ray diffraction data.All connectivity modes of the “parent” Ca-PiPhtA-I framework are retained in Ca-PiPhtA-II. Upon Ca-PiPhtA-I exposure to ammonia vapors (28% aqueous NH3) a new derivative is obtained (Ca-PiPhtA-NH3) containing 7 NH3 and 16 H2O molecules according to elemental and thermal analyses. Ca-PiPhtA-NH3 exhibits a complex X-ray diffraction pattern with peaks at 15.3 and 13.0 Å that suggest partial breaking and transformation of the parent pillared structure. Although detailed structural identification of Ca-PiPhtA-NH3 was not possible, due in part to nonequilibrium adsorption conditions and the lack of crystallinity, FT-IR spectra and DTA-TG analysis indicate profound structural changes compared to the pristine Ca-PiPhtA-I. At 98% RH and T = 24 °C, proton conductivity, σ, for Ca PiPhtA-I is 5.7 ×10−4 S·cm−1. It increases to 1.3 × 10−3 S·cm−1 upon activation by preheating the sample at 40 °C for 2 h followed by water equilibration at room temperature under controlled conditions. Ca-PiPhtA-NH3 exhibits the highest proton conductivity, 6.6 × 10−3 S·cm−1, measured at 98% RH and T = 24 °C. Ea for proton transfer in the above-mentioned frameworks range between 0.23 and 0.4 eV, typical of a Grothuss mechanism of proton conduction.Proyecto nacional MAT2010-1517

    Activation and Deactivation of a Robust Immobilized Cp*Ir-Transfer Hydrogenation Catalyst: A Multielement in Situ X-ray Absorption Spectroscopy Study

    Get PDF
    A highly robust immobilized [Cp*IrCl2]2 precatalyst on Wang resin for transfer hydrogenation, which can be recycled up to 30 times, was studied using a novel combination of X-ray absorption spectroscopy (XAS) at Ir L3-edge, Cl K-edge, and K K-edge. These culminate in in situ XAS experiments that link structural changes of the Ir complex with its catalytic activity and its deactivation. Mercury poisoning and “hot filtration” experiments ruled out leached Ir as the active catalyst. Spectroscopic evidence indicates the exchange of one chloride ligand with an alkoxide to generate the active precatalyst. The exchange of the second chloride ligand, however, leads to a potassium alkoxide–iridate species as the deactivated form of this immobilized catalyst. These findings could be widely applicable to the many homogeneous transfer hydrogenation catalysts with Cp*IrCl substructure

    New Insights into the Diversity of Marine Picoeukaryotes

    Get PDF
    Over the last decade, culture-independent surveys of marine picoeukaryotic diversity based on 18S ribosomal DNA clone libraries have unveiled numerous sequences of novel high-rank taxa. This newfound diversity has significantly altered our understanding of marine microbial food webs and the evolution of eukaryotes. However, the current picture of marine eukaryotic biodiversity may be significantly skewed by PCR amplification biases, occurrence of rDNA genes in multiple copies within a single cell, and the capacity of DNA to persist as extracellular material. In this study we performed an analysis of the metagenomic dataset from the Global Ocean Survey (GOS) expedition, seeking eukaryotic ribosomal signatures. This PCR-free approach revealed similar phylogenetic patterns to clone library surveys, suggesting that PCR steps do not impose major biases in the exploration of environmental DNA. The different cell size fractions within the GOS dataset, however, displayed a distinct picture. High protistan diversity in the <0.8 µm size fraction, in particular sequences from radiolarians and ciliates (and their absence in the 0.8–3 µm fraction), suggest that most of the DNA in this fraction comes from extracellular material from larger cells. In addition, we compared the phylogenetic patterns from rDNA and reverse transcribed rRNA 18S clone libraries from the same sample harvested in the Mediterranean Sea. The libraries revealed major differences, with taxa such as pelagophytes or picobiliphytes only detected in the 18S rRNA library. MAST (Marine Stramenopiles) appeared as potentially prominent grazers and we observed a significant decrease in the contribution of alveolate and radiolarian sequences, which overwhelmingly dominated rDNA libraries. The rRNA approach appears to be less affected by taxon-specific rDNA copy number and likely better depicts the biogeochemical significance of marine protists

    Phylogenetic Relationships and Evolutionary Patterns of the Order Collodaria (Radiolaria)

    Get PDF
    Collodaria are the only group of Radiolaria that has a colonial lifestyle. This group is potentially the most important plankton in the oligotrophic ocean because of its large biomass and the high primary productivity associated with the numerous symbionts inside a cell or colony. The evolution of Collodaria could thus be related to the changes in paleo-productivity that have affected organic carbon fixation in the oligotrophic ocean. However, the fossil record of Collodaria is insufficient to trace their abundance through geological time, because most collodarians do not have silicified shells. Recently, molecular phylogeny based on nuclear small sub-unit ribosomal DNA (SSU rDNA) confirmed Collodaria to be one of five orders of Radiolaria, though the relationship among collodarians is still unresolved because of inadequate taxonomic sampling. Our phylogenetic analysis has revealed four novel collodarian sequences, on the basis of which collodarians can be divided into four clades that correspond to taxonomic grouping at the family level: Thalassicollidae, Collozoidae, Collosphaeridae, and Collophidae. Comparison of the results of our phylogenetic analyses with the morphological characteristics of each collodarian family suggests that the first ancestral collodarians had a solitary lifestyle and left no silica deposits. The timing of events estimated from molecular divergence calculations indicates that naked collodarian lineages first appeared around 45.6 million years (Ma) ago, coincident with the diversification of diatoms in the pelagic oceans. Colonial collodarians appeared after the formation of the present ocean circulation system and the development of oligotrophic conditions in the equatorial Pacific (ca. 33.4 Ma ago). The divergence of colonial collodarians probably caused a shift in the efficiency of primary production during this period

    An electrochemical steam pump using a proton conducting ceramic

    No full text

    Porcelain shards from Portuguese wrecks: Raman spectroscopic analysis of marine archaeological ceramics

    No full text
    Abstract Raman spectroscopic analysis of shards recovered from two Portuguese shipwrecks, the Santo Espirito (1608) and the Santa Maria Madre de Deus (1643), believed to be carrying porcelains of the Ming period have revealed some interesting and novel results that inform historical ideas of porcelain production. The porcelain body of two of the four shards from the Santa Maria Madre de Deus were found to contain anatase, a low temperature polymorph of titanium dioxide, and β-wollastonite a mineral characteristic of soft-paste porcelains that are made at medium-temperature firing conditions. Previously, β-wollastonite has been found in a range of sixteenth to nineteenth century European porcelains but this is the first report of its detection in porcelain believed to be from the Ming period. These same shards exhibited unusual spectral features that were attributed to the resonance enhancement of rare earth elements that resulted from excitation using a near-infrared source

    Raman study on medioeval-like glass samples: glass characterization, artificial weathering and comparison with ancient K-based glasses

    No full text
    Potassium-rich ash-based glass is typical of medieval glass windows used in the Central Europe since 1000 A. D.. Glasses with medieval-like composition were prepared with different amounts of K2O (15\u201320\u201325 K2O weight%) using recipes deduced from archaeometric literature. Raman data of these samples were interpreted on the basis of the Qn units model and of the polymerization index Ip and confirm a close dependence of glass depolymerization on the potassium content. Generally, K-based glasses have high alteration sensitivity to pollutants conveyed by liquid or vapour water (rain, humidity and fog). In this work, the glass alteration processes were studied in terms of structural modifications related to the glass K content. Leaching and network dissolution were investigated by attack with boiling concentrated sulfuric acid and by exposure to high temperature and high pressure bidistilled water, respectively. The weight loss and alteration layer thickness were measured. The structural changes in the glass network and the presence of neoformation crystallized products were determined through linear Raman maps on altered glass cross sections. The more the glass network structure is depolymerized, the more the surface chemical attack is facilitated. The results obtained for the model glasses are comparedwith those for a set of ancient K-rich glass fragments
    corecore