1,808 research outputs found

    Conceptual design of a floating support structure for an offshore vertical axis wind turbine : the lessons learnt

    Get PDF
    The design of floating support structures for wind turbines located offshore is a relatively new field. In contrast, the offshore oil and gas industry has been developing its technologies since the mid 1950s. However, the significantly and subtly different requirements of the offshore wind industry call for new methodologies. An Energy Technologies Institute (ETI) funded project called NOVA (for Novel Vertical Axis wind turbine) examined the feasibility of a large offshore vertical axis wind turbine in the 10-20 MW power range. The development of a case study for the NOVA project required a methodology to be developed to select the best configuration, based on the system dynamics. The design space has been investigated, ranking the possible options using a multi-criteria decision making (MCDM) method called TOPSIS. The best 'class' or design solution (based on water plane area stability) has been selected for a more detailed analysis. Two configurations are considered: a barge and a semi-submersible. The iterations to optimise and compare these two options are presented here, taking their dynamics and costs into account. The barge concept evolved to the 'triple doughnut-Miyagawa' concept, consisting of an annular cylindrical shape with an inner (to control the damping) and outer (to control added mass) bottom flat plates. The semi-submersible was optimised to obtain the best trade-off between dynamic behaviour and amount of material needed. The main conclusion is that the driving requirement is an acceptable response to wave action, not the ability to float or the ability to counteract the wind turbine overturning moment. A simple cost comparison is presented

    Parametric analysis for an algal oil production process

    Get PDF
    Microalgae are considered to be one of the most feasible options that have the potential to serve as a major feedstock for biofuels and bio-products production. However, the economic viability of commercial scale production remains questionable by many researchers and investors. There are several uncertainties in the technology for microalgae growing and harvesting, and the extraction of algal oil, which makes it difficult to identify the technology most suitable for minimizing cost and maximizing profits. Therefore, there is a need to carry out parametric analyses to identify the influence of system configuration and process on the economic viability. This study establishes an economic analysis for a microalgae oil production pathway to determine the minimum cost of producing algal oil. Taking the capital and operating costs parameters from the economic analysis, some of the key parameters are changed across a range of values and their influence on the final cost of algal oil is analysed. Each of the parameters is analysed across a range of production scale from 5 to 75 g/m2/d. The results show that the most important cost-driving parameters are the pond cost (especially the liners) and the harvesting costs, and that the costs can be reduced from £1.87/L to £1.58/L for a growth rate of 25 g/m2/d and £1.34/L for a growth rate of 50 g/m2/d. This ultimately suggests that to achieve economic viability, improvements to cell biology (both growth rates and lipid content) and reducing systems unit costs while improving performance will be required together

    Output-only identification of rigid body motions of floating structures: a case study

    Get PDF
    In order to identify rigid body motions of floating offshore structures, output-only techniques are very useful for developing low-cost intermediate-scale experimental activities directly into the sea, instead of wave tanks. A crucial parameter, however, is the length of the response records used as input for the identification process, since short records may result in significant loss of accuracy, while long ones may be incompatible with the assumption of stationarity of the sea state. This work presents a sensitivity study conducted on a numerical model of a spar structure, identified by means of Enhanced Frequency Domain Decomposition method. An overview on the efficiency of the method is given for various lengths of response record, along with practical indications on the minimum values acceptable

    On intermediate-scale open-sea experiments on floating offshore structures: Feasibility and application on a spar support for offshore wind turbines

    Get PDF
    Experimental investigation of floating structures represents the most direct way for achieving their dynamic identification and it is particularly valuable for relatively new concepts, such as floating supports for offshore wind turbines, in order to fully understand their dynamic behaviour. Traditional experimental campaigns on floating structures are carried out at small scale, in indoor laboratories, equipped with wave and wind generation facilities. This article presents the results of an open-sea experimental activity on a 1:30 scale model of the OC3-Hywind spar, in parked rotor conditions, carried out at the Natural Ocean Engineering Laboratory (NOEL) of Reggio Calabria (Italy). The aim of the experiment is two-fold. Firstly, it aims to assess the feasibility of low-cost, intermediate-scale, open-sea activities on offshore structures, which are proposed to substitute or complement the traditional indoor activities in ocean basins. Secondly, it provides useful experimental data on damping properties of spar support structures for offshore wind turbines, with respect to heave, roll and pitch degrees of freedom. It is proven that the proposed approach may overcome some limitations of traditional small-scale activities, namely high costs and small scale, and allows to enhance the fidelity of the experimental data currently available in literature for spar floating supports for offshore wind turbines

    ON THE APPLICATION OF REMOTE SENSING TIME SERIES ANALYSIS FOR LAND COVER MAPPING: SPECTRAL INDICES FOR CROPS CLASSIFICATION

    Get PDF
    Abstract. This study aims to introduce a semi-automatic classification workflow for the production of a land use/land cover (LULC) map of the island of Sardinia (Italy) following the CORINE legend schema, and a ground spatial resolution compatible with a scale of 1:25.000. The classification is based on free high-resolution satellite imagery from Sentinel-1 and Sentinel-2 collected in 2020, ancillary data derived from Sardinian Geoportal, Joint Research Centre (JRC) and OpenStreetMap. The LULC map production includes three steps: 1) pixel-based classification, realized with two different approaches, that use i) information derived from existing thematic maps eventually re-coded in case of incoherencies observed between datasets and/or satellite data products, and ii) spectral indices and parameter thresholds defined on the basis of multitemporal analysis; 2) segmentation of Sentinel-1 and 2 annual composites, and pre-labelling of segments with the pixel-based classified map, obtaining the preliminary map; 3) visual inspection procedure in order to confirm, or re-assign, classes to polygons. The accuracy of the preliminary map was tested in a sample area and on specific class of non-irrigated crops through ground truth data collected from a detailed photo-interpretation, estimating 97% of overall accuracy. The results show a great improvement from existing thematic maps in terms of detail, with the possibility of a yearly updating of the map via automatic processes. However, some limitations were found, due to the high fragmentation of Sardinian landscape and the high variety of crop types and agricultural practices, that could affect the efficiency of the classifier

    Wearable High Voltage Compliant Current Stimulator for Restoring Sensory Feedback

    Get PDF
    Transcutaneous Electrical Nerve Stimulation (TENS) is a promising technique for eliciting referred tactile sensations in patients with limb amputation. Although several studies show the validity of this technique, its application in daily life and away from laboratories is limited by the need for more portable instrumentation that guarantees the necessary voltage and current requirements for proper sensory stimulation. This study proposes a low-cost, wearable high-voltage compliant current stimulator with four independent channels based on Components-Off-The-Shelf (COTS). This microcontroller-based system implements a voltage-current converter controllable through a digital-to-analog converter that delivers up to 25 mA to load up to 3.6 kΩ. The high-voltage compliance enables the system to adapt to variations in electrode-skin impedance, allowing it to stimulate loads over 10 kΩ with currents of 5 mA. The system was realized on a four-layer PCB (115.9 mm × 61 mm, 52 g). The functionality of the device was tested on resistive loads and on an equivalent skin-like RC circuit. Moreover, the possibility of implementing an amplitude modulation was demonstrated

    Dynamics of marine vehicles with aerodynamic surfaces

    Get PDF
    An assessment of the relative speeds and payload capacities of airborne and waterborne vehicles highlights a gap which can be usefully filled by a new vehicle concept, utilizing both hydrodynamic and aerodynamic forces. A high speed marine vehicle equipped with aerodynamic surfaces (called an AAMV, 'Aerodynamically Alleviated Marine Vehicle') is one such concept. The development of this type of vehicle requires a mathematical framework to characterize its dynamics taking account of both aerodynamic and hydrodynamic forces. This thesis presents the development of unified and consistent equations of equilibrium and equations of motion to predict the dynamic performance of such AAMV configurations. An overview of the models of dynamics developed for Wing In Ground effect 'WIGe' vehicles and high speed marine vehicles (planing craft) is given first. Starting from these models, a generic AAMV configuration is proposed and a kinematics framework is developed. Then, taking into account the aerodynamic, hydrostatic and hydrodynamic forces acting on the AAMV, equations of equilibrium are derived and solved. This is followed by deriving and solving the full equations of motion, using a small perturbation assumption. A static stability criterion, specific for the AAMV configuration, has been developed. This mathematical framework and its results are implemented in MATLAB and validated against theoretical and experimental data. The resultant capability for analysing novel AAMV configurations is presented through two parametric analysis. The analysis demonstrate that these models offer a powerful AAMV design tool.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Synthesis, Antitumor and Antiviral In Vitro Activities of New Benzotriazole-Dicarboxamide Derivatives

    Get PDF
    Cancer and viral infections continue to threaten humankind causing death worldwide. Hence, the discovery of new anticancer and antiviral agents still represents a major scientific goal. Heterocycles designed to mimic the chemical structure of natural pyrimidines and purines have been designed over the years, exerting their activity acting as false substrates on several different targets. We reported a series of bis-benzotriazole-dicarboxamide derivatives which inhibit viral helicase of poliovirus, and hence we planned structure modifications to obtain different series of new dicarboxamides. Here, the synthesis and characterization of 56 new compounds: 31 bis-benzotriazole dicarboxamides and 25 mono-substituted acidic derivatives are reported. The synthesized compounds were tested for their antiviral and antitumor activity. Mostly, compounds 4a, 4c and 4d showed antiviral activity against tested Picornaviruses, Coxsackievirus B5 and Poliovirus-1. Likewise, four derivatives (3b, 3d, 4d, 9b) showed notable antiproliferative activity inhibiting cell growth in two distinct antitumor screenings. Compound 3b was selected as the antitumor lead compound for the wide range of activity and the potency proved. The lead compound was proved to induce apoptosis in SK-MES1 tumor cells, in a dose-dependent manner

    Mucuna pruriens (Velvet bean) Rescues Motor, Olfactory, Mitochondrial and Synaptic Impairment in PINK1(B9) Drosophila melanogaster Genetic Model of Parkinson's Disease

    Get PDF
    The fruit fly Drosophila melanogaster (Dm) mutant for PTEN-induced putative kinase 1 (PINK1B9) gene is a powerful tool to investigate physiopathology of Parkinson's disease (PD). Using PINK1B9 mutant Dm we sought to explore the effects of Mucuna pruriens methanolic extract (Mpe), a L-Dopa-containing herbal remedy of PD. The effects of Mpe on PINK1B9 mutants, supplied with standard diet to larvae and adults, were assayed on 3–6 (I), 10–15 (II) and 20–25 (III) days old flies. Mpe 0.1% significantly extended lifespan of PINK1B9 and fully rescued olfactory response to 1-hexanol and improved climbing behavior of PINK1B9 of all ages; in contrast, L-Dopa (0.01%, percentage at which it is present in Mpe 0.1%) ameliorated climbing of only PINK1B9 flies of age step II. Transmission electron microscopy analysis of antennal lobes and thoracic ganglia of PINK1B9 revealed that Mpe restored to wild type (WT) levels both T-bars and damaged mitochondria. Western blot analysis of whole brain showed that Mpe, but not L-Dopa on its own, restored bruchpilot (BRP) and tyrosine hydroxylase (TH) expression to age-matched WT control levels. These results highlight multiple sites of action of Mpe, suggesting that its effects cannot only depend upon its L-Dopa content and support the clinical observation of Mpe as an effective medication with intrinsic ability of delaying the onset of chronic L-Dopa-induced long-term motor complications. Overall, this study strengthens the relevance of using PINK1B9 Dm as a translational model to study the properties of Mucuna pruriens for PD treatment

    Development and validation of a coupled numerical model for offshore floating multi-purpose platforms

    Get PDF
    A multi-purpose platform (MPP) is an offshore system designed to serve the purposes of more than one off-shore industry. Over the past decades, a number of industries have expanded or are expanding, from onshore to offshore locations. In the present work, the MPP proposed in the framework of Blue Growth Farm project is considered. The aim here is to develop and validate a coupled aero-hydro-servo-elastic numerical model, which will be used to predict the dynamic response of the MPP under a wide range of environmental condi-tions. Model test research was conducted to validate the developed numerical model. The model test was carried out in the water basin at Centrale Nantes, employing the Froude scale strategy. An innovative ap-proach to modelling wind load in the experimental environment was proposed and applied. This paper re-ports the up-to-date research outcome of the Blue Growth Farm project - numerical model development and validation
    corecore