693 research outputs found
Nonstationary Stochastic Resonance in a Single Neuron-Like System
Stochastic resonance holds much promise for the detection of weak signals in
the presence of relatively loud noise. Following the discovery of nondynamical
and of aperiodic stochastic resonance, it was recently shown that the
phenomenon can manifest itself even in the presence of nonstationary signals.
This was found in a composite system of differentiated trigger mechanisms
mounted in parallel, which suggests that it could be realized in some
elementary neural networks or nonlinear electronic circuits. Here, we find that
even an individual trigger system may be able to detect weak nonstationary
signals using stochastic resonance. The very simple modification to the trigger
mechanism that makes this possible is reminiscent of some aspects of actual
neuron physics. Stochastic resonance may thus become relevant to more types of
biological or electronic systems injected with an ever broader class of
realistic signals.Comment: Plain Latex, 7 figure
Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats
Anthocyanins are secondary plant metabolites responsible for the blue, purple, and red color of many plant
tissues. The phenolic structure of anthocyanins conveys marked antioxidant activity in model systems via donation of
electrons or hydrogen atoms from hydroxyl moieties to free radicals. Dietary intakes of anthocyanins may exceed 200 mg/day, however, little is known about their antioxidant potency in vivo. Consequently, the aim of this study was to
establish whether anthocyanins could act as putative antioxidant micronutrients. Rats were maintained on vitamin
E-deficient diets for 12 weeks in order to enhance susceptibility to oxidative damage and then repleted with rations
containing a highly purified anthocyanin-rich extract at a concentration of 1 g/kg diet. The extract consisted of the
3-glucopyranoside forms of delphinidin, cyanidin, petunidin, peonidin, and malvidin. Consumption of the anthocyanin repleted
diet significantly improved (p < 0.01) plasma antioxidant capacity and decreased (p < 0.001) the vitamin E
deficiency-enhanced hydroperoxides and 8-Oxo-deoxyguanosine concentrations in liver. These compounds are indices
of lipid peroxidation and DNA damage, respectively. Dietary consumption of anthocyanin-rich foods may contribute to
overall antioxidant status, particularly in areas of habitually low vitamin E intake.Fundação para Ciência e Tecnologi
Nonstationary Stochastic Resonance
It is by now established that, remarkably, the addition of noise to a
nonlinear system may sometimes facilitate, rather than hamper the detection of
weak signals. This phenomenon, usually referred to as stochastic resonance, was
originally associated with strictly periodic signals, but it was eventually
shown to occur for stationary aperiodic signals as well. However, in several
situations of practical interest, the signal can be markedly nonstationary. We
demonstrate that the phenomenon of stochastic resonance extends to
nonstationary signals as well, and thus could be relevant to a wider class of
biological and electronic applications. Building on both nondynamic and
aperiodic stochastic resonance, our scheme is based on a multilevel trigger
mechanism, which could be realized as a parallel network of differentiated
threshold sensors. We find that optimal detection is reached for a number of
thresholds of order ten, and that little is gained by going much beyond that
number. We raise the question of whether this is related to the fact that
evolution has favored some fixed numbers of precisely this order of magnitude
in certain aspects of sensory perception.Comment: Plain Latex, 6 figure
Spin dynamics simulations of the magnetic dynamics of RbMnF and direct comparison with experiment
Spin-dynamics techniques have been used to perform large-scale simulations of
the dynamic behavior of the classical Heisenberg antiferromagnet in simple
cubic lattices with linear sizes . This system is widely recognized
as an appropriate model for the magnetic properties of RbMnF.
Time-evolutions of spin configurations were determined numerically from coupled
equations of motion for individual spins using a new algorithm implemented by
Krech {\it etal}, which is based on fourth-order Suzuki-Trotter decompositions
of exponential operators. The dynamic structure factor was calculated from the
space- and time-displaced spin-spin correlation function. The crossover from
hydrodynamic to critical behavior of the dispersion curve and spin-wave
half-width was studied as the temperature was increased towards the critical
temperature. The dynamic critical exponent was estimated to be , which is slightly lower than the dynamic scaling prediction, but in
good agreement with a recent experimental value. Direct, quantitative
comparisons of both the dispersion curve and the lineshapes obtained from our
simulations with very recent experimental results for RbMnF are presented.Comment: 30 pages, RevTex, 9 figures, to appear in PR
Damping of spin waves and singularity of the longitudinal modes in the dipolar critical regime of the Heisenberg-ferromagnet EuS
By inelastic scattering of polarized neutrons near the (200)-Bragg
reflection, the susceptibilities and linewidths of the spin waves and the
longitudinal spin fluctuations were determined separately. By aligning the
momentum transfers q perpendicular to both \delta S_sw and the spontaneous
magnetization M_s, we explored the statics and dynamics of these modes with
transverse polarizations with respect to q. In the dipolar critical regime,
where the inverse correlation length kappa_z(T) and q are smaller than the
dipolar wavenumber q_d, we observe:(i) the static susceptibility of \delta
S_sw^T(q) displays the Goldstone divergence while for \delta S_z^T(q) the
Ornstein-Zernicke shape fits the data with a possible indication of a
thermal(mass-)renormalization at the smallest q-values, i.e. we find
indications for the predicted 1/q divergence of the longitudinal
susceptibility; (ii) the spin wave dispersion as predicted by the
Holstein-Primakoff theory revealing q_d=0.23(1)\AA^{-1}in good agreement with
previous work in the paramagnetic and ferromagnetic regime of EuS; (iii) within
experimental error, the (Lorentzian) linewidths of both modes turn out to be
identical with respect to the q^2-variation, the temperature independence and
the absolute magnitude. Due to the linear dispersion of the spin waves they
remain underdamped for q<q_d. These central results differ significantly from
the well known exchange dominated critical dynamics, but are quantitatively
explained in terms of dynamical scaling and existing data for T>=T_C. The
available mode-mode coupling theory, which takes the dipolar interactions fully
into account, describes the gross features of the linewidths but not all
details of the T- and q-dependencies. PACS: 68.35.Rh, 75.40.GbComment: 10 pages, 7 figure
Nucleon mass and sigma term from lattice QCD with two light fermion flavors
We analyze Nf=2 nucleon mass data with respect to their dependence on the
pion mass down to mpi = 157 MeV and compare it with predictions from covariant
baryon chiral perturbation theory (BChPT). A novel feature of our approach is
that we fit the nucleon mass data simultaneously with the directly obtained
pion-nucleon sigma-term. Our lattice data below mpi = 435 MeV is well described
by O(p^4) BChPT and we find sigma=37(8)(6) MeV for the sigma-term at the
physical point. Using the nucleon mass to set the scale we obtain a Sommer
parameter of r_0=0.501(10)(11) fm.Comment: 26 pages, 11 figures, 5 tables. Version to appear in NPB with a few
more details on the fit parameter
A stochastic model for heart rate fluctuations
Normal human heart rate shows complex fluctuations in time, which is natural,
since heart rate is controlled by a large number of different feedback control
loops. These unpredictable fluctuations have been shown to display fractal
dynamics, long-term correlations, and 1/f noise. These characterizations are
statistical and they have been widely studied and used, but much less is known
about the detailed time evolution (dynamics) of the heart rate control
mechanism. Here we show that a simple one-dimensional Langevin-type stochastic
difference equation can accurately model the heart rate fluctuations in a time
scale from minutes to hours. The model consists of a deterministic nonlinear
part and a stochastic part typical to Gaussian noise, and both parts can be
directly determined from the measured heart rate data. Studies of 27 healthy
subjects reveal that in most cases the deterministic part has a form typically
seen in bistable systems: there are two stable fixed points and one unstable
one.Comment: 8 pages in PDF, Revtex style. Added more dat
Spin Susceptibility and Superexchange Interaction in the Antiferromagnet CuO
Evidence for the quasi one-dimensional (1D) antiferromagnetism of CuO is
presented in a framework of Heisenberg model. We have obtained an experimental
absolute value of the paramagnetic spin susceptibility of CuO by subtracting
the orbital susceptibility separately from the total susceptibility through the
Cu NMR shift measurement, and compared directly with the theoretical
predictions. The result is best described by a 1D antiferromagnetic
Heisenberg (AFH) model, supporting the speculation invoked by earlier authors.
We also present a semi-quantitative reason why CuO, seemingly of 3D structure,
is unexpectedly a quasi 1D antiferromagnet.Comment: 7 pages including 4 tables and 9 figure
Synchronization and resonance in a driven system of coupled oscillators
We study the noise effects in a driven system of globally coupled
oscillators, with particular attention to the interplay between driving and
noise. The self-consistency equation for the order parameter, which measures
the collective synchronization of the system, is derived; it is found that the
total order parameter decreases monotonically with noise, indicating overall
suppression of synchronization. Still, for large coupling strengths, there
exists an optimal noise level at which the periodic (ac) component of the order
parameter reaches its maximum. The response of the phase velocity is also
examined and found to display resonance behavior.Comment: 17 pages, 3 figure
- …