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Abstract

We analyze Nf = 2 nucleon mass data with respect to their dependence on the pion
mass down to mπ = 157 MeV and compare it with predictions from covariant baryon
chiral perturbation theory (BChPT). A novel feature of our approach is that we fit
the nucleon mass data simultaneously with the directly obtained pion-nucleon σ-term.
Our lattice data below mπ = 435 MeV is well described by O(p4) BChPT and we find
σ = 37(8)(6) MeV for the σ-term at the physical point. Using the nucleon mass to set
the scale we obtain a Sommer parameter of r0 = 0.501(10)(11) fm.

Keywords: nucleon mass, pion-nucleon sigma term, Sommer scale, covariant baryon
chiral perturbation theory, finite size corrections

1. Introduction

Predicting low-energy hadronic properties is one basic goal of lattice QCD. A partic-
ular challenge to experiment as well as to theory is posed by the so-called pion-nucleon
σ-term

σ = m`

〈
N |(ūu+ d̄d)|N

〉
(1)

which parametrizes the light quark contribution to the nucleon mass. Here m` = mu =
md denotes the light quark mass.
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At present, phenomenology does not give a clear picture of the magnitude of σ. A dis-
persion theoretical analysis led to σ = 64(8) MeV [1], similar to the value σ = 64(7) MeV
obtained later in Ref. [2]. However the analysis of Ref. [3] suggested a much lower value,
σ = 45(8) MeV, which was also found in [4]. Recently, a new evaluation resulted in
σ = 59(7) MeV [5].

Calculating the pion-nucleon σ-term directly on the lattice is a computationally inten-
sive task as it involves the computation of quark-line disconnected correlation functions.
This has become feasible recently and was performed by us and others [6–8], though only
at a single value of m` and of the lattice spacing a. An alternative, which has often been
used in the past (see, e.g., the recent studies [8–11]), is given by the Feynman-Hellmann
theorem. It allows us to express σ in terms of the derivative of the nucleon mass MN

with respect to m`:

σ = m`
∂MN

∂m`
. (2)

Calculating the nucleon mass on the lattice as a function of m` is relatively straight-
forward, but becomes expensive close to the physical point.

Until very recently, lattice QCD calculations have therefore been performed at rather
large quark masses, such that results had to be extrapolated to the physical point over a
wide range. Thanks to the efforts of different lattice QCD collaborations during the last
years this situation has much improved. The QCDSF collaboration, for example, has
generated a large set of Nf = 2 gauge field configurations for a variety of quark masses,
lattice spacings and volumes, reaching down to pion masses of about 157 MeV. These
simulations employ the standard Wilson gauge action and the non-perturbatively O(a)
improved clover action for two flavors of mass-degenerate quarks.

In this paper we analyze nucleon mass data obtained from these simulations with
respect to their quark-mass and volume dependence, compare this to SU(2) covariant
baryon chiral perturbation theory (BChPT), and extract a value for the pion-nucleon
σ-term utilizing the Feynman-Hellmann theorem. A novel feature of our analysis is
that we combine the nucleon mass data with a direct determination of the pion-nucleon
σ-term [7], fitting both simultaneously to the corresponding O(p4) BChPT expressions.
It turns out that this gives much more reliable and precise results compared to fits to
the nucleon mass data only.

The outline of this article is as follows: In the next section we summarize and describe
our lattice data. Our fitting procedure is described in Sec. 3. The results of the fits
are then discussed in Sec. 4. In Sec. 5 we summarize the outcome of our analysis. In
Appendix A we review the results from BChPT which underlie our analysis. Some more
details on the fits can be found in Appendix B.

2. Lattice data

Our lattice data for the pseudoscalar (amπ) and nucleon mass (aMN ) were extracted
from one-exponential fits to smeared-smeared correlators. For the smearing we used
Jacobi smearing for all data sets apart from the more recent analyses at β = 5.29,
κ = 0.13632 and κ = 0.13640. For κ = 0.13632 our aforementioned direct calculation
of the σ-term was performed [7], for which a more optimized smearing was critical to
obtaining a signal for the scalar matrix element. We achieved this by using Wuppertal
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β κ lattice amπ aMN r0mπ r0MN L/r0

5.25 0.13460 163 × 32 0.4932(10) 0.9436(49) 3.256(27) 6.230(59) 2.42
5.25 0.13520 163 × 32 0.3821(13) 0.7915(55) 2.523(22) 5.226(56) 2.42

? 5.25 0.13575 243 × 48 0.2556(5) 0.6061(38) 1.687(14) 4.002(41) 3.63
? 5.25 0.13600 243 × 48 0.1840(7) 0.5088(72) 1.215(11) 3.359(55) 3.63

5.25 0.13620 323 × 64 0.0997(11) 0.4012(87) 0.658(9) 2.649(61) 4.85

5.29 0.13400 163 × 32 0.5767(11) 1.0546(51) 4.039(32) 7.386(67) 2.28
5.29 0.13500 163 × 32 0.4206(9) 0.8333(32) 2.946(24) 5.836(50) 2.28
5.29 0.13550 123 × 32 0.3605(32) 0.8325(96) 2.525(30) 5.831(81) 1.71
5.29 0.13550 163 × 32 0.3325(14) 0.7020(72) 2.329(20) 4.916(63) 2.28

? 5.29 0.13550 243 × 48 0.3270(6) 0.6858(33) 2.290(18) 4.804(44) 3.43
5.29 0.13590 123 × 32 0.3369(62) 0.8071(208) 2.360(47) 5.653(152) 1.71
5.29 0.13590 163 × 32 0.2518(15) 0.6306(53) 1.763(17) 4.417(50) 2.28

? 5.29 0.13590 243 × 48 0.2395(5) 0.5554(46) 1.677(13) 3.890(44) 3.43
? 5.29 0.13620 243 × 48 0.1552(6) 0.4670(49) 1.087(10) 3.271(42) 3.43

5.29 0.13632 243 × 48 0.1112(9) 0.4250(60) 0.779(9) 2.977(48) 3.43
5.29 0.13632 323 × 64 0.1070(5) 0.3900(50) 0.750(7) 2.732(41) 4.57

? 5.29 0.13632 403 × 64 0.1050(3) 0.3810(30) 0.735(6) 2.669(29) 5.71
5.29 0.13640 403 × 64 0.0660(8) 0.3708(196) 0.463(7) 2.597(139) 5.71

? 5.29 0.13640 483 × 64 0.0570(7) 0.3420(80) 0.399(6) 2.395(59) 6.85

5.40 0.13500 243 × 48 0.4030(4) 0.7556(17) 3.339(30) 6.260(58) 2.90
5.40 0.13560 243 × 48 0.3123(7) 0.6260(26) 2.588(24) 5.186(51) 2.90
5.40 0.13610 243 × 48 0.2208(7) 0.5085(45) 1.829(17) 4.213(53) 2.90
5.40 0.13625 243 × 48 0.1902(6) 0.4655(35) 1.576(15) 3.857(45) 2.90
5.40 0.13640 243 × 48 0.1538(10) 0.4265(67) 1.274(14) 3.533(64) 2.90

? 5.40 0.13640 323 × 64 0.1505(5) 0.4163(44) 1.246(12) 3.449(48) 3.86
5.40 0.13660 323 × 64 0.0845(6) 0.3530(71) 0.700(8) 2.924(64) 3.86

? 5.40 0.13660 483 × 64 0.0797(3) 0.3143(52) 0.660(7) 2.604(49) 5.79

Table 1: Lattice data for the pseudoscalar (amπ) and the nucleon mass (aMN ) in lattice units. In
columns 6 and 7 we list the corresponding values in units of r0. For amπ and aMN we give the statistical
errors, for r0mπ (r0MN ) the errors are the combined statistical errors of r0/a and amπ (aMN ). Stars
in the first column mark all those entries which enter our fits [depending on the upper limit set for
(r0mπ)2].

smearing with APE smoothed links. This improved method was also applied to our
calculations at κ = 0.13640.

Table 1 lists our data for the pseudoscalar (amπ) and nucleon masses (aMN ). We
also state the corresponding values r0mπ and r0MN in units of the Sommer scale r0,
extrapolated to m` = 0 [12] (see Table 2). The error quoted for amπ and aMN is the
statistical uncertainty of the data, while for r0mπ (r0MN ) it is the combined error of
r0/a and amπ (aMN ).

In Fig. 1 we show our data for r0MN plotted versus (r0mπ)2. Different symbols and
colors are used to distinguish between data for the different β. Data points which refer to
the same (β, κ) but different lattice volumes are connected by dotted lines to emphasize
finite volume effects.

From this figure (and also from closer inspection of the data) we find that, within the
given precision, our data show no systematic dependence on the lattice spacing and, thus,
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Figure 1: Lattice data for r0MN versus (r0mπ)2 for different lattice spacings (β = 5.25, 5.29, 5.40) and
volumes. Open (filled) symbols refer to points where L ≤ 3r0 (L > 3r0). A black-framed (yellow) circle
indicates the physical point assuming r0 = 0.5 fm. The dotted lines connect points of the same (β, κ)
but different lattice size. They are meant to guide the eye and to illustrate finite-volume effects.

are close to the continuum limit. We therefore scale our data by the respective values
of the chirally extrapolated r0/a and do not attempt a continuum-limit extrapolation.
Finite volume effects, on the other hand, are clearly visible and will be incorporated
into the fits. In fact, they provide an additional valuable input, because some of the
low-energy constants (LECs) also enter the volume corrections.

Before fitting these data to BChPT expressions, all values for the pion mass have to be
extrapolated to infinite volume. A method to calculate these finite-volume corrections has
been worked out in [13]. When applying this method to our data we find, however, that
the corresponding values for mπL have to satisfy at least mπL > 3.5. Below this limit,
the finite-size effects of our pion mass data are stronger than the calculated corrections.
If mπL ≥ 4 the data points and the extrapolated values even agree within errors (see
Fig. 2 for an illustration). This means that, within the available precision, correcting for
finite-volume effects according to [13] will only help us if 3.5 ≤ mπL ≤ 4.0. In all these

β 5.25 5.29 5.40

r0/a 6.603(53) 7.004(54) 8.285(74)

Table 2: Lattice estimates of r0/a for different β, extrapolated to the chiral limit [12].
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Figure 2: Volume dependence of our pion mass data. Left top: β = 5.29, κ = 0.13632. Left bottom:
β = 5.29, κ = 0.13640. Right top: β = 5.40, κ = 0.13640. Right bottom: β = 5.40, κ = 0.13660.
Dashed-dotted lines represent finite-volume extrapolations, obtained from applying the method of [13]
to the point for the smallest r0/L. Vertical dotted lines denote constant mπL. Gray areas mark the
region (mπL < 3.5) where finite-volume corrections are not under control.

cases we have at least one point with mπL ≈ 4 (or larger).
For the final fits to BChPT, we therefore exclude all (β, κ) combinations for which

there is not at least one data point that satisfies mπL > 3.5, and then take the value for
r0mπ from the largest available volume (with mπL > 4) as our estimate of the infinite-
volume limit. As argued above, a finite-volume correction according to Ref. [13] would
not give different results for r0mπ, but in this way we are a bit more conservative about
the error.

There is, however, one data point where we allow for an exception to this rule: the
estimate for r0mπ at β = 5.29 and κ = 0.13640 (mπ ≈ 157 MeV). At these parameters
the largest available lattice size is currently 483×64, but we expect no drastic changes of
r0mπ if the volume is enlarged further, because the PCAC-mass dependence of our pion
mass data below 290 MeV (considering largest-volume data only) is quite linear already.1

As mentioned above, a novel feature of our analysis is that we take additional data
for σ into account, which comes from a direct determination. So far, we have computed
this at β = 5.29, κ = 0.13632 on a 323 × 64 and 403 × 64 lattice [7]. This corresponds to
a pion mass of about 290 MeV, and we will use the value

r0σ = 0.273(25) (3)

from the 403 × 64 lattice in what follows.

1Note also that if with larger volumes the pion mass further decreased the χ2
r-value of our fits presented

below would actually improve, with negligible effects on the fitted parameters. We have tested that.
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3. Fitting to covariant chiral perturbation theory

3.1. Fitting formulae

We intend to fit our data to BChPT. The expressions at next-to-leading one-loop
order are given in Appendix A. We expand those up to order m4

π:

MN = M0 − 4c1m
2
π −

3g2
Am

3
π

32πF 2
π

+ 4er1m
4
π

+
m4
π

8π2F 2
π

[
3c2
16
− 3g2

A

8M0
+ log

mπ

λ

(
8c1 −

3c2
4
− 3c3 −

3g2
A

4M0

)]
, (4)

σ = −4c1m
2
π −

9g2
Am

3
π

64πF 2
π

+m4
π

[
8er1 −

8c1l
r
3

F 2
π

+
3c1

8π2F 2
π

− 3c3
16π2F 2

π

− 9g2
A

64π2M0F 2
π

+
1

4π2F 2
π

log
mπ

λ

(
7c1 −

3c2
4
− 3c3 −

3g2
A

4M0

)]
. (5)

These epxressions involve the low-energy constants c1, c2 and c3 as well as the renormal-
ized counterterm coefficient er1 and

lr3 ≡ −
1

64π2

(
l̄3 + 2 log

mphys
π

λ

)
, (6)

which depend on the renormalization scale λ. The pion decay constant Fπ and the
nucleon axial coupling constant gA are taken at the physical point, which is consistent
with the order of BChPT we are using. For the fits we will set Fπ = 92.4 MeV and
gA = 1.256. The renormalization scale λ is set to λ = mphys

π = 138 MeV. 2

To correct for finite-volume effects in our nucleon mass data we employ the finite-
volume correction at next-to-leading one-loop order in BChPT. It reads

∆MN (m2
π, L) = ∆M (3)(m2

π, L) + ∆M (4)(m2
π, L) , (7)

where ∆M (3) and ∆M (4) can be read off from Eqs. (A.15) and (A.16) with the substi-
tution m→ mπ. This is consistent with the order we are using.

Since our data is given in units of r0, for the fits we have to re-express all dimensionful
quantities in units of r0, too:

MN (mπ)→ M̂N (m̂π), ∆MN (mπ, L)→ ∆M̂N (m̂π, L̂) and σ(mπ)→ σ̂(m̂π) (8)

where a “̂” indicates the expression is understood in units of r0, e.g., M̂N = r0MN .
As not all parameters of Eqs. (4) and (5) are well constrained by our fits, some of

these will be fixed to their phenomenological values, e.g., Fπ, c2, c3 and l̄3. Consequently,
a physical input value for r0 has to be provided as well, which is however unknown a
priori.

2
::::
Note

::::
that

::::::::
choosing

::::::
another

::::::::::::::
renormalisation

::::
scale

:::
will

:::::
only

::::::
change

:::
the

:::::
values

::
of
:::
er1 :::

and
:::
lr3.

:::
All

:::::
other

:::::::::
parameters

:::
are

::::::::
invariant.

::::
We

::::
have

:::::::
checked

::::
that

::::
this

:
is
::::::::

satisfied
::
for

::::
our

:::
fits.
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We fix r0 for each fit separately by iterating over different physical r
(k)
0 (k = 1, 2, . . .),

plugged into the fitting formulae until r0 comes out self-consistently from the fit, that is

ε >
∣∣∣r(k)

0 − r(k−1)
0

∣∣∣ where r
(k)
0 =

M̂N

(
r

(k−1)
0 ·mphys

π

)
Mphys
N

. (9)

We set ε = 0.001, and for most of our fits r0 converges after 10 to 15 iterations. By
construction, all fits will pass through the physical point Mphys

N = 938 MeV at mphys
π =

138 MeV.
Two kinds of fits will be discussed below: fits to our nucleon mass data, using the

χ2-function

χ2
N =

Ndata∑
i=1

(
M̂N (xi) + ∆M̂N (xi, yi)− zi

)2

e2
i

(10)

and combined (simultaneous) fits to the nucleon and σ-term data, using the χ2-function

χ2
Nσ = χ2

N +
(σ̂N (xj)− z̄j)2

ē2
j

. (11)

Here x = r0mπ, y = L/r0, z = r0MN refer to our measured points and e denotes the
error of r0MN . In χ2

Nσ, z̄j (j ∈ {1, . . . , Ndata}) refers to our single directly determined
result for r0σ and ēj is its error, see Eq. (3). As finite-size effects appear to be negligible
for this number (see Ref. [7]) we do not apply any finite-volume corrections in this case.

3.2. Fit ranges

Our nucleon mass data of Table 1 covers a range of r0mπ values from 0.42 up
to 4.04, and L/r0 ranges from 1.71 to 6.85. In physical units this corresponds to
mπ ≈ 0.17 . . . 1.58 GeV and L = 0.85 . . . 3.4 fm when r0 = 0.5 fm. When fitting these
data we do not know a priori for which range of values of mπ and L we can trust our
fitting functions. We therefore vary constraints on r0mπ (L/r0) from above (below).
The constraint L/r0 > 3 turns out to be low enough such that there is sufficient data to
perform stable fits but also large enough so that ∆MN captures the finite-volume effects,
see, e.g., the discussion below.

For r0mπ, on the other hand, we find it reasonable to constrain it from above by
(r0mπ)2

max = 1.6, if not (r0mπ)2
max = 1.3. Both these upper bounds give results which

agree within errors, albeit with a larger uncertainty for the latter. Also our independent
measurement of r0σ [Eq. (3)] at r0mπ ≈ 0.735 is then well reproduced by Eq. (5), not
only for a combined fit [Eq. (11)] but also if one uses Eq. (5) with the parameters from
a stand-alone fit to the nucleon mass data. For larger (r0mπ)2

max, say (r0mπ)2
max = 3.0,

the fits change quantitatively and qualitatively: The mπ-dependence of the nucleon mass
[Eq. (4)] becomes more concave in shape and our data point for r0σ lies below the fit
curves. If one only considered the nucleon mass data, such fits over a larger mπ-range
would roughly capture the overall mπ-dependence [even up to mπ ≈ 1 GeV where O(p4)
BChPT certainly does not hold], but this is likely to be accidental for the given order
as was pointed out already in [14]. Our definitive analysis will therefore be restricted to
fits for which (r0mπ)2

max ≤ 1.6. For our final estimates of r0 and σ we will even restrict
ourselves to (r0mπ)2

max ≤ 1.3.
7



3.3. Parameters

Let us now discuss the parameters in the fit functions. Besides Fπ and gA, the
functions in Eqs. (10) and (11) contain five and six free parameters, respectively. These
are M0, ci (i = 1, 2, 3) and er1 for Eq. (10) and l̄3 in addition for Eq. (11). Ideally one
would like to determine these all from fits to the lattice data. This is however not possible
with our current data and we therefore have to fix some of the parameters to values from
the literature.

As l̄3 only enters r0σ [see Eq. (5)] this parameter should not be left free in a fit with
only one data point to constrain it. For our combined fits [Eq. (11)] we therefore fix it to
the FLAG-estimate [15]

l̄3 = 3.2(8) (12)

and check for the stability of our final results varying l̄3 = 3.2 within one standard
deviation.

For c2 and c3 we proceed similarly. At first one might be tempted not to fix these two
parameters at all. However, like the renormalization-scale dependent parameter er1, c2
and c3 gain influence at larger mπ. So, if these parameters are all left free in fits to low
mπ-mass data, their uncertainties would be unreasonably large. We therefore decided to
fix c2 and c3 to their latest phenomenological values [16, 17],

c2 = 3.3(2) GeV−1 and c3 = −4.7(1.3) GeV−1 , (13)

and investigate the stability of our final results varying the less precisely known parameter
c3 by one standard deviation. Additional fits are performed where c3 is left as a free
parameter.

To check the stability of the fit parameters c1 and M0, and also of our estimates of
r0M

phys
N and r0σ at the physical point, additional fits are performed where the expressions

in Eqs.(4) and (5) are truncated at orders O(m3
π) and O(m2

π).

4. Results

4.1. Discussion of our fits

In Fig. 3 we show an example fit to the nucleon mass data. Full (black) circles in
Fig. 3 represent our lattice data for the nucleon mass, and the surface is a fit to these
points. We fit to the surface r0MN (r0mπ, L/r0), hence the finite-volume corrections are
determined directly through the fit as well. The (red) diamonds in Fig. 3 represent the
lattice data, after subtracting these volume corrections.

An overview of our fits and parameters can be found in Appendix B where we list all
our combined and stand-alone fits in Tables B.4 and B.5, respectively, and also provide
more detail for the interested reader.

In Figs. 4 and 5 we display the fit curves corresponding to some of the results listed
in these tables, together with the lattice data after subtracting the volume corrections.
The overlap of points indicates the quality of these fitted corrections. In Fig. 4, three
of our combined fits are shown (Soo3, Soo2 and Soo1 of Table B.4), each for the same
choice of fixed parameters (c2, c3 and l̄3 as given in Eqs. (12) and (13)), but for different
fit ranges

(r0mπ)2 < (r0mπ)2
max , (14)

8



r0MN

r0/L (r0mπ)2

Figure 3: Fit (surface) to the nucleon mass data (full circles) for a range of r0/L and (r0mπ)2 values.
Black circles lie above the surface, gray (or half gray) below (or on) the surface. The line and the red
diamonds at r0/L = 0 mark the fitted infinite volume prediction. For the sake of simplicity, for each
(r0mπ)2 only one extrapolated (red) point is shown at r0/L = 0.

where (r0mπ)2
max is 3.0, 1.6 or 1.3, always requiring L/r0 > 3. Fig. 5 shows a correspond-

ing stand-alone fit (Noo2 of Table B.5) to the nucleon mass data for (r0mπ)2
max = 1.6.

Our fits perform significantly better if the σ-term constraint [Eq. (3)] is incorpo-
rated. For these combined fits the individual uncertainty of each fit parameter is smaller
than for the corresponding fit to the nucleon mass data alone, while the χ2

r-values
(χ2
r ≡ χ2/ndf) largely remain unaffected. Fits qualities are inferior, if nucleon mass

data up to (r0mπ)2 = 3.0 is included, but if one lowers this upper bound to 1.6 or 1.3,
χ2
r-values around 1 can be reached. Also the data point for r0σ [Eq. (3)] then agrees with

the O(p4) BChPT expression for σ(mπ) [Eq. (5)], whether or not the data point for r0σ
was included in the fit (compare Figs. 4 and 5). For the fit range (r0mπ)2 < 3.0 this is
not the case anymore.

4.2. Weighted averages

Based on the results summarized in Table B.4, we estimate the weighted averages of
our fit results for r0σphys and r0M

phys
N . For the weights we use the statistical error, and

only values from fits with χ2
r < 1.3 are allowed to enter the average. We obtain the values

listed in Table 3. As one can see from this table, our results for r0 for (r0mπ)2 < 1.6 and
(r0mπ)2 < 1.3 are consistent within errors, including that from the stand-alone fit.

In this table we also give the systematic error due to varying c3 (second parenthesis)
and l̄3 (third parenthesis) one standard deviation around their phenomenological values
in Eqs. (12) and (13). In total the systematic error is as large as the statistical error.
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Figure 4: Simultaneous fits to the nucleon mass (left) and σ-term data (right) for three fitting windows
with (r0mπ)2max = 3.0, 1.6 and 1.3 (from top to bottom). These fits are labeled Soo3, Soo2 and Soo1

in Table B.4, where c2 ≡ 3.3 GeV−1, c3 ≡ −4.7 GeV−1 and l̄3 ≡ 3.2. Lines, error bands and (full red)
points are shown for the limit L → ∞ (cf. Fig. 3). A black-framed circle marks the location of the
physical point using—for each plot separately—the r0-value for which the fit is self-consistent. Open
points did not enter any fit. In the left plots, the overlap of red points at (r0mπ)2 = 0.436 and 0.538
indicates the quality of the (fitted) finite-volume corrections.

10



2

3

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

mπ [MeV]500400300200

r 0
M

N

(r0mπ)
2

0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0

400300200138

r 0
σ

(r0mπ)
2

mπ [MeV]

Figure 5: Left panel: stand-alone fit to the nucleon mass data (see fit Noo2 in Table B.5). Right panel:
comparison of the σ-term data (open symbols) for a 323 × 64 and 403 × 64 lattice [7] and the BChPT
expression for σ(mπ) with the parameters M0, c1 and e1r taken from the nucleon mass fit shown in
the left panel. The black-framed circle is the value for r0MN (r0σN ) at the physical point for these
parameters. In both panels, the one-sigma error band is shown in gray. As in Fig. 4, the overlap of (red)
points (left panel) at same (r0mπ)2 indicates the quality of the (fitted) finite-volume corrections.

fit (r0mπ)2max r0σphys r0 [GeV−1] r0 [fm] σphys [MeV]

O(m4
π) : χ2

N 1.6 0.103(23)(5) 2.51(6)(2) 0.495(12)(4) 41(9)(2)
O(m4

π) : χ2
Nσ 1.6 0.095(11)(12)(4) 2.54(3)(4)(2) 0.501(6)(8)(4) 37(4)(5)(2)

O(m4
π) : χ2

Nσ 1.3 0.093(20)(15)(5) 2.54(5)(5)(2) 0.501(10)(10)(4) 37(8)(6)(2)
O(m3

π) : χ2
Nσ 1.0 0.121(5) 2.49(3) 0.491(6) 49(2)

O(m2
π) : χ2

Nσ 1.0 0.065(7) 2.58(3) 0.509(5) 25(3)

Table 3: Weighted averages of fit results with χ2
r < 1.3. The first row gives averages for (stand-alone) fits

to the nucleon mass data; the remaining rows for (combined) fits to the nucleon mass and σ-term data.
The first column specifies the order of the chiral expansion, the second the upper limit on r0mπ . Some
of the weighted averages come with a statistical and systematic error: The error in the first parenthesis
is always the statistical error and the second (third) the systematic error estimated by changing the fixed
parameter c3 (l̄3) by one standard deviation [see Eq. (12) and (13)]. The numbers that went into the
averages are listed in Tables B.4 and B.5.

4.3. Fits to lower order expansions

It is interesting to check the robustness of the above estimates for r0 and σphys by
fits to O(m2

π) and O(m3
π) BChPT. Up to these orders, only c1 and M0 are left as free

parameters. Note that we still have to correct for the finite-volume effect in the nucleon
mass data. We do this by setting (as above) c2 = 3.3 GeV−1 and c3 = −4.7 GeV−1 in
∆MN .

For the fits to O(m2
π) and O(m3

π) BChPT we employ the χ2-function for our combined
fits [Eq. (11)]. The fitting ranges are chosen as above but we add to these (r0mπ)2

max = 1.0.
It turns out that only for (r0mπ)2

max = 1.0 reasonable fits to O(m2
π) and O(m3

π) BChPT
can be found.

Our results for r0σphys and r0 from these fits are listed in Table 3. To ease the
comparison we also show them with our O(m4

π) results in Fig. 6. Open (full) symbols
correspond to fits where χ2

r > 2 (χ2
r < 2), black-framed full symbols represent good fits

where χ2
r < 1.3.
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Figure 6: Results for r0σ at the physical point (left panel) and r0 (right panel) from fits to BChPT
truncating the fit functions MN (mπ) and σ(mπ) at different orders in mπ . Only results for our combined
fits [Eq. (11)] are shown. Points are grouped together with respect to the upper cutoff on (r0mπ)2.
Red diamonds are for fits to order O(m2

π), blue squares are for O(m3
π). Green circles refer to the

weighted averages in Table 3, where for the error the statistical and systematic errors have been added
in quadrature. Full (open) symbols refer to fits for which χ2

r < 2.0 (> 2.0); black-framed full symbols to
fits where χ2

r < 1.3. The gray bands represent the errors for the lower green circle, which corresponds
to our final values for r0σphys (left) and r0 (right).

As can been seen from this figure, fits to different orders in mπ result in slightly
different estimates both for r0 and r0σphys, and also come with a different fit quality.
However, these deviations get smaller when increasing the order or decreasing (r0mπ)2

max.
For fixed (r0mπ)2

max, points for different orders seem to alternate around a yet unknown
value with the tendency of coming closer to that with each order. Results from fits to
even larger orders or lower (r0mπ)2

max will likely be found within the error bounds of the
O(m4

π) results.
We therefore conclude that our estimates for r0 and σphys, that is, the weighted

averages of our results from the combined O(m4
π) fits with (r0mπ)2

max = 1.3, lead to
sufficiently conservative errors to accommodate all of the uncertainties involved when
fitting nucleon mass data to BChPT.

4.4. Comparing different orders

Let us finally try to get an impression of the convergence properties of the BChPT
formulae we are using. To this end we plot in Fig. 7 a combined fit (Sfo1 in Table B.4,
where c3 is a free parameter) along with the curves which result from truncating the
BChPT function at O(m2

π) and at O(m3
π), using the same parameter values. In addition

we show two (three) curves where the contribution of fifth order in mπ has been added to
the fitted function varying the new LECs dr16, dr18 and lr4 appearing in this contribution
within a phenomenologically acceptable (slightly expanded) range. At this order, the
LECs dr16 and dr18 enter as the difference 2dr16 − dr18 (see Appendix A for details), which
currently is known only approximate, 2dr16 − dr18 = (−2.0 ± 2.5)GeV−2 [18, 19]. For lr4
we use the value for l̄4 given in [15].

Given this range of expected values, we see that the fifth order correction becomes
a non-negligible effect already at pion masses well below the physical kaon mass. More
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Figure 7: Comparison of one of our combined fits to the contributions from lower orders (O(m2
π) and

O(m3
π)) and to the O(m5

π) expansion. For all expansions the parameters are fixed to those of the fit
(Sfo1 in Table B.4). The additional parameters for the O(m5

π) expansion were fixed to values consistent
with current expectations (see text). In addition, we show the O(m5

π) expansion assuming a larger
value for 2d16 − d18 than currently expected from phenomenology (very right dashed-dotted line). For
simplicity, we show only finite-volume corrected data (diamonds) from the largest lattice volumes, even
though for (r0mπ)2 = 0.435 and 0.540 also points from smaller volumes entered the fit.

specifically, at pion masses of ∼ 350 MeV, the fifth order contribution is already of about
the same size as the third order term from the leading-one-loop correction. This leads
us to the conclusion that, in case of the nucleon mass and sigma term, BChPT (with
the current LECs) shows no sign of convergence beyond mπ > 250 MeV. Discussions
pointing in this direction can also be found in, e.g., [14, 20–23]. If one allowed, however,
for a slightly wider range for 2dr16 − dr18, say 2dr16 − dr18 = 3.0 GeV−2, the fifth order
contribution could be much smaller (see Fig. 7). But this is speculative only, and an
improved knowledge on the values for dr16 and dr18 is required to decide on that. At least
from the small difference of the O(p3) and O(p4) functions at small (r0mπ)2, we learn
that the LECs c2, c3 and er1 are not well constrained by nucleon mass data at pion masses
mπ < 300 MeV.

5. Conclusions

We have presented Nf = 2 QCD nucleon mass data. The corresponding pion mass
values range from about 1.5 GeV down to 157 MeV. To estimate the nucleon σ-term we
have performed two kinds of fits to expressions from O(p4) BChPT: (stand-alone) fits to
our nucleon mass data and simultaneous fits to the nucleon mass and σ-term data. The
latter was determined in a separate study [7] at a pion mass of about 290 MeV.
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Figure 8: Comparison of lattice estimates for the pion-nucleon σ-term at the physical point for Nf = 2
and Nf = 2 + 1 QCD [9, 11, 24–29]. The lowermost point represents our estimate for σphys [Eq. (16)].

For the fits, different fitting ranges in mπ and L (spatial lattice extension) have
been tested. We find that if one demands mπ < 500 MeV [(r0mπ)2 < 1.6] and also
L > 1.5 fm acceptable fits to O(p4) BChPT can be found.3 These fits do not only give a
good description of the mπ dependence of the data but also of the finite-volume effects.
Generally, our simultaneous fits perform better than fits to the nucleon mass data alone.
They are also robust against variations of (r0mπ)2

max and of the low energy constants
c2, c3 and l̄3. We have found a strong correlation between the counterterm coefficient er1
and c3. More data points below 500 MeV pion mass will be needed to resolve this issue
or to fix c2 and c3 through lattice data.

As our final estimates we quote

r0 = 0.501(10)(11) fm (15)

and
σphys = 37(8)(6) MeV . (16)

These numbers are the weighted averages given in the last row of Table 3, adding the two
systematic errors in quadrature. These numbers result from our fits to O(p4) BChPT,
fitting simultaneously the nucleon mass and σ-term data up to pion masses of about
433 MeV. Within errors, we find these numbers to be consistent with corresponding
fits to O(p2) and O(p3) BChPT (see Fig. 6), and also with our recent estimate σphys =
31(3)(4) MeV for Nf = 2 + 1 [9].

3Still one needs to have access to mπ-values for which mπL ≥ 3.5. Otherwise the finite-volume effect
for mπ is not under control.
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Figure 9: Top: combined fit to our nucleon mass (red diamonds) and σ-term data (light green band).
Shown are the volume-corrected data (determined through the fit) for one volume only. The fit’s char-
acteristics (fit ranges, fixed parameters) are the same as for the fit labeled Soo1 in Table B.4. The inner
band is the error band for the fit, the outer band illustrates the variation of the fit changing l̄3 and c3
by one standard deviations around their phenomenological values [Eqs. (12) and (13)]. For the physical
point, marked by a (yellow) circle, we use our final estimate for r0 [Eq. (15)]. Bottom: same as top
panel, but the combined fit also includes the nucleon mass data of the ETM collaboration (blue squares)
[30]. Note that their data is plotted against the π+ mass.
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Agreement is also found if one compares with other estimates, for example, with the
Nf = 2 + 1 estimate of the BMW collaboration [10], the CSSM results for Nf = 2 and
Nf = 2 + 1 [11, 28, 31] or with one of the ETM estimates for Nf = 2 [30] (see Fig. 8
for a comparison). Note that ETM quotes a final result σphys = 64(1)MeV from a fit to
O(p3) BChPT, however they find also σphys = 39(12)MeV from a modified fit function
(see Figs. 13 and 14 of [30]). Also from our fits to O(p3) BChPT we could find larger
values for σ, depending on the largest pion mass included in the fits. However, based on
the systematic procedure we have applied here, we think the value in Eq. (16) is more
reliable.

To compare our results with other recent Nf = 2 calculations we have redone our
combined fits including the raw (i.e., not corrected for finite-size effects) data of the
ETM collaboration [30] into our analysis. This roughly doubles the amount of data
which is available at mπ < 300 MeV. Repeating fits for different fixed parameter values
l̄3, c2 and c3 we obtain values for r0 and σphys which agree within errors with those of
Eqs. (15) and (16). The bottom panel of Fig. 9 shows one of these fits: Red diamonds
represent our data, blue squares ETMC’s points, all after subtracting the finite-volume
corrections. As above, these corrections were determined directly through the fit, using
points from different volumes but same (r0mπ)2. For simplicity though, in this figure
only points from the largest available lattice volumes are shown. The short (green) band
is from the value r0σ = 0.273(25) [7] which constrains the slope of the fitting function at
r0mπ = 0.735. The yellow circle marks the physical point using our r0-value in Eq. (15).
For a comparison, the top panel of Fig. 9 shows the corresponding fit (labeled Soo1 in
Table B.4) without ETMC’s points included.

We conclude with a note on r0: The value r0 = 0.501(10)(11) fm obtained from our
fits is somewhat surprising. In other studies (including ours) r0 was often found to be
about 0.47 fm (see, e.g., [30, 32–34]). Here r0 was fixed iteratively forcing the fit to be

self-consistent, i.e. r0 = M̂N (r0 ·mphys)/M
phys
N . Our value for r0 (and that for σphys)

is thus valid as long as the following assumptions are satisfied: (a) O(m4
π) BChPT is

sufficient to describe our data below mπ = 435 MeV, (b) discretization effects are really
negligible and (c) a physical value of 938 MeV is adequate for a two-flavor calculation.
Whether these assumptions have to be changed or relaxed has to be seen when there
will be more data available at smaller pion masses and lattice spacings, and also for
simulations with Nf = 2+1 and Nf = 2+1+1. From the right panel of Fig. 6, however,
we see a trend for r0: it increases when the upper limit on r0mπ is lowered.

Note that also a recent study [35] of the kaon decay constant finds a r0-value of around
0.5 fm from a two-flavor lattice calculation. Their estimate is completely consistent with
our estimate of Eq. (15).
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Appendix A. Nucleon mass and pion-nucleon σ-term from BChPT

In this Appendix we derive our fit formulae from a next-to-leading one-loop order (or
O(p4)) calculation of the nucleon mass in covariant baryon chiral perturbation theory
(BChPT) for two light flavors. The pion-nucleon σ term then follows from an applica-
tion of the Feynman-Hellmann theorem (see Eq.(2)). In addition we need to know the
connection between the quark mass and the pion mass to O(p4) [39, 40]. Denoting the
mass of the degenerate light quarks by m` = mu = md the leading term is given by the
Gell-Mann–Oakes–Renner relation

m2
π = 2B0m` . (A.1)

While the quark mass m` and the parameter B0 are scheme and scale dependent, the
auxiliary variable

m2 ≡ 2B0m` (A.2)

is independent of these conventions.
The generic O(p4) result for the nucleon mass can be written as

MN = M0 +M (1) +M (2) +M (3) +M (4) +O(p5) . (A.3)

Evaluating the required loop diagrams with IR-regularization [41] one obtains

M (1) = 0 , (A.4)

M (2) =− 4c1m
2 , (A.5)

M (3) =− 3(g0
A)2m3

16π2(F 0
π )2

{√
1− m2

4M2
0

arccos
m

2M0
+

m

4M0
log

m2

M2
0

}
, (A.6)

M (4) = 4ẽr1(λ)m4 +
3m4

64π2(F 0
π )2

log
m2

λ2

{
8c1 − c2 − 4c3 −

(g0
A)2

M0

}
+

3m4

64π2(F 0
π )2

{
c2
2
− 3

(g0
A)2

M0
+

(g0
A)2

M0
log

m2

M2
0

}

− 3c1(g0
A)2m6

16π2(F 0
π )2M2

0

log
m2

M2
0

− m

M0

arccos m
2M0√

1− m2

4M2
0

 . (A.7)

Here g0
A and F 0

π denote the axial coupling constant of the nucleon and the pion decay
constant in the chiral limit, and c1, c2, c3 are the standard low-energy constants (see,
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e.g., [42]). The renormalized counterterm coefficient ẽr1(λ) depends on the scale λ of
dimensional regularization in such a way that M (4) does not depend on λ.

The generic next-to-leading one-loop result for the sigma term of the nucleon reads

σ = σ(1) + σ(2) + σ(3) + σ(4) +O(p5) . (A.8)

Utilizing the relation

σ = m`
∂MN (m`)

∂m`
= m2 ∂MN (m2)

∂m2 (A.9)

one obtains from Eqs.(A.4)-(A.7)

σ(1) = 0 , (A.10)

σ(2) =− 4c1m
2 , (A.11)

σ(3) =− 3(g0
A)2m3
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(A.13)

Finite volume corrections to the nucleon mass can be evaluated from the same Feyn-
man diagrams. At next-to-leading one-loop order one gets [43]

∆MN (m2, L) = ∆M (3)(m2, L) + ∆M (4)(m2, L) +O(p5) (A.14)

with

∆M (3) =
3(g0

A)2M0m
2

16π2(F 0
π )2

∫ ∞
0

dx
∑
~n 6=~0

K0

(
L|~n|

√
M2

0x
2 +m2(1− x)

)
, (A.15)

∆M (4) =
3m4

4π2(F 0
π )2

∑
~n 6=~0

[
(2c1 − c3)

K1(L|~n|m)

L|~n|m
+ c2

K2(L|~n|m)

(L|~n|m)2

]
, (A.16)

where Ki is a modified Bessel function. Note that the value ~n = ~0 is omitted in the
threefold sum over the integers n1, n2, n3.

For the applications in the present paper it is advantageous to consider the nucleon
mass as a function of the pion mass mπ (the mass of the lowest lying 0− state in the
simulation). Therefore we have to convert our expressions for MN (m2) of Eq.(A.3) into
expressions for MN (m2

π). Utilizing the O(p4) result [39]

m2
π = m2 + 2lr3(λ)

m4

(F 0
π )2

+
m4

32π2(F 0
π )2

log
m2

λ2
+O(p6) (A.17)
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we can eliminate the dependence on m at the cost of introducing the renormalized low-
energy constant lr3(λ), which cancels the dependence on the renormalization scale λ of
the associated chiral logarithm in Eq. (A.17). Note, however, that lr3(λ) can be subsumed
into an effective coupling er1(λ) via

er1(λ) ≡ ẽr1(λ) + 2 lr3(λ)
c1

(F 0
π )2

(A.18)

and therefore cannot be determined independently within an analysis of the mass of the
nucleon. One finds

MN (mπ) =M0 − 4c1m
2
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Note that we have shifted the couplings g0
A → gA, F

0
π → Fπ to their physical values,

consistent to the order at which we are working. This applies also to the finite volume
corrections, where we may in addition replace m by mπ.

For the σ term as a function of mπ we obtain

σ(mπ) =− 4c1m
2
π −

3g2
Am

3
π

16π2F 2
π

 3− m2
π
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2
√
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32π2F 2
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1− m2
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
+

5

2
δM

(5)
N . (A.20)

Note that in contrast to the chiral extrapolation function of the mass of a nucleon given
in Eq. (A.19) the dependence on the counter term lr3(λ) introduced in Eq. (A.17) cannot
be absorbed completely into the effective coupling er1(λ). In order to calculate σ(mphys

π )
we therefore also need information on the numerical size of the coupling l̄3, which is
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related to the scale-dependent coupling lr3(λ) via

lr3(λ) = − 1

64π2

(
l̄3 + log

m2

λ2

)
. (A.21)

Finally, expanding the expressions for MN (mπ) and σ(mπ) given in Eqs. (A.19) and
(A.20), respectively, in powers of mπ up to O(m4

π) we arrive at the formulae Eqs. (4)
and (5) used in our fits.

Let us now estimate the theoretical uncertainty associated with our next-to-leading
one-loop BChPT calculation of MN due to the truncation of O(p5) effects (and all higher
orders). A complete two-loop calculation of the nucleon mass in BChPT, employing a
reformulated version of infrared regularization, has been worked out in Refs. [23, 44].
Truncating the result at O(m5

π), we find

MN = M0 + k̃1m
2
π + k̃2m

3
π + k̃3m

4
π log

(mπ

λ

)
+ k̃4m

4
π

+ k̃5m
5
π log

(mπ

λ

)
+ k̃6m

5
π +O(m6

π) .
(A.22)

The coefficients of this expansion are given by

k̃1 = −4c1 , k̃2 = − 3(g0
A)2

32π(F 0
π )2

,

k̃3 = −3(g0
A)2 − 32c1M0 + 3c2M0 + 12c3M0

32M0π2(F 0
π )2

,

k̃4 = 4er1 −
3(2(g0

A)2 − c2M0)

128M0π2(F 0
π )2

, k̃5 =
3(g0

A)4

64π3(F 0
π )4

,

k̃6 =
3g0
A

256M2
0π

3(F 0
π )4

(
(g0
A)3M2

0 + π2
(
16g0

AM
2
0 l
r
4 + (F 0

π )2(g0
A − 32M2

0 (2dr16 − dr18))
))
.

The one-loop expression (coefficients k̃1 – k̃4) is consistent with Eq.(4). In order to
study the higher order effects we need values of the additional low-energy constants lr4
and 2dr16 − dr18. From [15, 18, 19] we find lr4(λ = 0.138 GeV) = 0.027 and (with a consid-
erable uncertainty) dr16(λ = 0.138 GeV) = −1.76 GeV−2. For the scale-independent
constant dr18, Ref. [42] derives the value dr18 = −0.80 GeV−2 from the Goldberger-
Treiman relation. In view of the large uncertainty of dr16 we use the rough estimate
2dr16 − dr18 = (−2.5± 2.0) GeV−2. This estimate, however, does not reproduce the mπ-
dependence of our nucleon mass data. Using 2dr16 − dr18 = 3.0 GeV−2 instead results in
much better fits to the data. The O(m5

π) curves in Fig. 7 have been calculated with both
these numbers.

The corresponding expansion of the σ term is calculated from the derivative of MN

with respect to the light quark mass according to Eq.(2). Expressed in terms of mπ it
reads

σ = h̃1m
2
π + h̃2m

3
π + h̃3m

4
π log

(mπ

λ

)
+ h̃4m

4
π

+ h̃5m
5
π log

(mπ

λ

)
+ h̃6m

5
π +O(m6

π) ,
(A.23)
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with the coefficients

h̃1 = −4c1 , h̃2 = − 9(g0
A)2

64π(F 0
π )2

,

h̃3 = −3(g0
A)2 − 28M0c1 + 3M0c2 + 12M0c3

16M0π2(F 0
π )2

,

h̃4 = 8er1 −
8c1l

r
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− 3

64M0π2(F 0
π )2

(
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)
,

h̃5 =
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A)2(40(g0
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1024π3(F 0
π )4

,

h̃6 =
3g0
A

2048M2
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3(F 0
π )4

{
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A(12(g0

A)2 − 1)M2
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+ 4π2
[
16g0

A(5lr4 − 3lr3)M2
0 + 5(F 0
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A − 32M2
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]}

.

:::::::
Finally,

::::
we

::::
add

:::
a

:::::::
remark

:::::::::::
concerning

:::::
the

:::::
LEC

::::
er1.

::::::::
Becher

::::
and

:::::::::::
Leutwyler

:::::
give

:::
an

::::::::
estimate

:::
for

::::
the

::::::
Delta

::::::::::::
contribution

:::
to

:::::
ēBL1 ::::

(see
:::::
App.

:::
D

::
of

:
[45]

::
):

:

ēBL1,∆ = − g2
∆

48π2∆
::::::::::::::

6 log
::::

 ∆

2M0
::::

+5
::

 . (A.24)

:::
For

::::::::::::::::::
g∆ = 13.0 GeV−1,

:::::::::::::::::::::::::
∆ = (1.232− 0.939) GeV,

::::
this

::::::::
amounts

:::
to

:::::::::::::::::
ēBL1,∆ ∼ 7.5 GeV−3.

::::::::::::
Translated

::
to

::::
our

::::::
choice

:::
of

::::::
LECs,

:::::
this

::::::
would

:::::
give

4
:
ẽr1(λ = MN )
::::::::::

= 4
:::

ē1 +
3(g2 − 8c1M0 + c2M0 + 4c3M0)

32M0π2(F 0
π )2

log

:::::::::::::::::::::::::::::::::::::

mphys

Mphys
N

::::::

= 7.5
:::::

GeV−3
::::::

,

⇒ −1
:::::

GeV−3
::::::

. er1(λ = 0.138
::::::::::::

GeV)
:::::

. 1
:

GeV−3
::::::

, (A.25)

::
so

:::::
this

:::::::::
(shifted)

:::::
LEC

::::::
may

:::::::::
therefore

::::::::::
expected

:::
to

:::
be

:::::::
small.

:::::::::
Indeed,

:::::
such

:::::::::::
resonance

::::::::::
saturation

:::::::::
estimates

:::::::
usually

:::::
give

::::
very

::::::
rough

::::::::::
estimates

:::
for

::::
the

::::::::::::
higher-order

::::::
LECs,

:::
at

:::::
least

::
in

::::
the

:::::::::
baryonic

:::::::
sector.

:::::::::::::
Nonetheless,

:::::
such

::
a
::::::
range

:::
of

:::::::
values

:::
for

:::
er1::::::

would
::::

be
::::::::::
consistent

::::
with

::::
the

::::::::
findings

:::
of

::::
our

:::
fits

::::
(cf.

::::::::::::::
Appendix B).

:

Appendix B. More details on the fits

Here we give a short summary and discussion of the fit parameters for our (simultane-
ous) fits to the nucleon mass (and σ-term) data. For both types, fits have been performed
for different fit ranges and fixed input parameters, c2, c3 and l̄3, in order to systematically
explore the dependence of the fit parameters on this external bias. Table B.4 summarizes
the results for the combined fits and Table B.5 those for the stand-alone fits.

The two tables have to be read as follows: Each line is the result for one particular
fit. In the first column, a unique key is assigned to each fit. Keys starting with N (“no
σ“) refer to stand-alone fits to the nucleon mass data [i.e., Eq. (10)], while keys starting
with S (“with σ”) signify combined fits [Eq. (11)]. The second and third characters are
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either m, o, p or f, depending on the values assigned to the parameters c3 and l̄3 (see
Sec. 3.3). If the second (third) character is an o, c3 (l̄3) was fixed to c3 = −4.7 GeV−1

(l̄3 = 3.2); if instead this character is p (m), c3 and l̄3 were fixed to these values, plus
(minus) one standard deviation. If the second character is f, c3 was not fixed but left as
a free fit parameter. Since c2 is known to a much better precision than c3 [see Eq. (13)]
it is not varied, but always set to its phenomenological value c2 = 3.3 GeV−1. Each key
ends with an integer labeling, in increasing order, the upper limit (r0mπ)2

max of the fit
interval

(r0mπ)2 < (r0mπ)2
max , (B.1)

where (r0mπ)2
max is either 1.3, 1.6 or 3.0 (given in the second column). In all cases we

require L/r0 > 3. To reduce the finite-volume effect in the pion mass, we exclude data
points for all those (β, κ) combinations for which there is not at least one value for r0mπ

available that satisfies mπL > 3.5.
All (fixed and floating) fit parameters listed in Tables B.4 and B.5 are given in units

of r0. The corresponding self-consistent physical value of r0—reached iteratively for each
fit (see Eq. (9))—is given in the last column in GeV−1. That is, if one is interested in the
physical value for a particular fit parameter, this parameter has to be multiplied by the
corresponding power of r0 given at the end of the same line. In Table B.4 we also give
weighted averages of the fit parameters for fits with a χ2

r < 1.3 (see lines starting with
“ave.“).

Let us now comment our fits. The fact that our fits with (r0mπ)2 < 1.6 yield (in
the majority of cases) χ2

r-values around one indicates that the constraint L/r0 > 3.0 on
the spatial lattice extension has been sufficient to correct for the finite-volume effect in
the data. This can be seen also from Fig. B.10, where we compare data for r0MN at
fixed (β, κ) but different L/r0 to the fitted function at the corresponding r0mπ. If we
had relaxed the constraint L/r0 > 3, the finite-volume effect could not be completely
compensated for data points with L/r0 ≤ 3. This is, for example, the case for our points
at (β, κ) = (5.40, 0.13640) from a 243 × 48 lattice.

Looking at the fit parameter er1, our fits are less robust, however. In fact, the sign
of er1 is strongly correlated with the value we choose for c3. If we set, for example,
c3 = −4.7 + 1.3 GeV−1 all fits result in a positive er1, while, if we set c3 = −4.7 GeV−1 or
c3 = −4.7−1.3 GeV−1, er1 comes always out negative. The value we choose for l̄3 does not
affect the sign of er1, yet l̄3 has a minor effect on er1’s absolute value. To our knowledge,
nothing is really known about the sign of er1, so we do not restrict it. From our data we
can say it tends to be negative if c3 ≤ −4.7GeV−1 and positive if c3 ≥ −3.4 GeV−1. If we
leave c3 as free fit parameter, we obtain values around −5.0 GeV−1 for c3 (±1.5GeV−1

statistical uncertainty), and e1
r is consistent with zero within errors. This is found for

fits where (r0mπ)2
max is either 1.6 or 1.3.

:::::::::::::
Interestingly,

::::
the

::::::
range

::
of

::::::
fitted

:::::::
values

:::
for

:::
er1

:::
lies

:::
in

:::
the

:::::::::
ballpark

:::::::::
expected

:::::
from

::::::::
BChPT

:::::
(see Eq. (A.25)

::
).

:

A correlation with c3 is also seen for r0σphys and r0 (see columns 9 and 10 in Tables
B.4 and B.5). For larger, i.e., less negative values of c3, the results for r0σphys tend to
smaller numbers, while r0 tends to larger values.

For the reader’s convenience, we visualize the variation of the values for r0 and r0σphys

in Fig. B.11 (only for results from Table B.4). From top to bottom, panels are ordered
with decreasing (r0mπ)2

max, while within each panel, points are grouped according to the
values chosen for c3 and l̄3. Symbols distinguish different c3, neighboring points with the
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r 0
M

N

r0/L

(β, κ) = (5.40, 0.13660)

fit: Smp1

fit: Soo1

fit: Spm1
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3.0

0.0 0.1 0.2 0.3 0.4

r 0
M

N

r0/L

(β, κ) = (5.29, 0.13632)

fit: Smp1

fit: Soo1

fit: Spm12.6
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Figure B.10: Volume dependence of our nucleon mass data at (β, κ) = (5.29, 0.13632) (left) and
(5.40, 0.13660) (right) resulting from different combined fits, labeled Smp1, Soo1 and Spm1 in Table B.4.
They illustrate the maximum variation of the finite-volume corrections for all our combined fits [for
(r0mπ)2 < 1.3] with the parameters c3 and l̄3.

same symbol are for different l̄3. The color intensity of each point is related to the χ2
r-

value of each point. When applicable each panel also shows the corresponding weighted
average.
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key (r0mπ)2max χ2
r r0M0 c1/r0 er1/r

3
0 c2/r0 c3/r0 r0σphys r0 [1/GeV]

? Smm1 1.30 4.470 / 5 2.26(4) -0.34(3) -0.142(11) 1.30 -2.37 0.098(17) 2.53(4)
? Smo1 1.30 4.450 / 5 2.22(4) -0.36(3) -0.148(10) 1.32 -2.39 0.104(17) 2.51(4)
? Smp1 1.30 4.810 / 5 2.19(4) -0.39(3) -0.155(10) 1.33 -2.42 0.111(18) 2.48(4)
? Som1 1.30 4.550 / 5 2.31(4) -0.28(3) -0.022(11) 1.28 -1.83 0.084(18) 2.57(4)
? Soo1 1.30 4.060 / 5 2.29(4) -0.29(3) -0.024(11) 1.29 -1.84 0.089(17) 2.56(4)
? Sop1 1.30 3.690 / 5 2.26(4) -0.31(3) -0.027(10) 1.30 -1.85 0.094(17) 2.53(4)
Spm1 1.30 6.990 / 5 2.37(4) -0.22(3) 0.087(12) 1.26 -1.30 0.070(22) 2.61(5)

? Spo1 1.30 6.380 / 5 2.35(4) -0.23(3) 0.087(11) 1.27 -1.31 0.074(22) 2.60(5)
? Spp1 1.30 5.770 / 5 2.33(4) -0.25(3) 0.087(11) 1.28 -1.32 0.079(22) 2.58(5)

ave. 1.30 χ2
r < 1.3 2.28(4) -0.31(3) -0.048(11) — — 0.093(18) 2.54(4)

? Sfm1 1.30 4.180 / 4 2.28(7) -0.31(7) -0.089(127) 1.29 -2.13(58) 0.092(30) 2.55(7)
? Sfo1 1.30 3.850 / 4 2.26(7) -0.32(7) -0.073(125) 1.30 -2.06(56) 0.095(30) 2.54(7)
? Sfp1 1.30 3.620 / 4 2.25(8) -0.33(7) -0.054(122) 1.31 -1.98(55) 0.098(30) 2.52(7)

ave. 1.30 χ2
r < 1.3 2.26(7) -0.32(7) -0.072(125) — -2.05(56) 0.095(3) 2.54(7)

? Smm2 1.60 5.140 / 7 2.25(3) -0.35(2) -0.146(5) 1.30 -2.37 0.100(9) 2.53(3)
? Smo2 1.60 5.100 / 7 2.22(3) -0.36(2) -0.150(5) 1.32 -2.39 0.105(9) 2.51(3)
? Smp2 1.60 5.460 / 7 2.19(4) -0.38(2) -0.154(5) 1.33 -2.42 0.110(10) 2.48(3)
? Som2 1.60 5.270 / 7 2.30(3) -0.29(2) -0.028(5) 1.29 -1.83 0.089(10) 2.56(3)
? Soo2 1.60 4.730 / 7 2.28(3) -0.31(2) -0.029(5) 1.30 -1.84 0.093(9) 2.55(3)
? Sop2 1.60 4.350 / 7 2.25(4) -0.32(2) -0.030(5) 1.30 -1.86 0.097(9) 2.53(3)
? Spm2 1.60 7.820 / 7 2.35(3) -0.24(2) 0.079(5) 1.27 -1.31 0.078(12) 2.60(4)
? Spo2 1.60 7.100 / 7 2.33(3) -0.25(2) 0.080(5) 1.28 -1.32 0.081(12) 2.59(4)
? Spp2 1.60 6.430 / 7 2.31(4) -0.26(2) 0.081(5) 1.28 -1.32 0.084(11) 2.57(3)

ave. 1.60 χ2
r < 1.3 2.28(4) -0.31(2) -0.033(5) — — 0.095(10) 2.54(3)

? Sfm2 1.60 4.870 / 6 2.27(6) -0.32(6) -0.095(123) 1.30 -2.15(57) 0.096(18) 2.54(5)
? Sfo2 1.60 4.510 / 6 2.26(6) -0.33(6) -0.077(121) 1.30 -2.07(55) 0.098(18) 2.53(5)
? Sfp2 1.60 4.280 / 6 2.24(6) -0.33(6) -0.055(118) 1.31 -1.97(54) 0.099(18) 2.52(5)

ave. 1.60 χ2
r < 1.3 2.26(6) -0.33(6) -0.08(12) — -2.1(6) 0.098(18) 2.53(5)

Smm3 3.00 50.650 / 9 2.11(3) -0.48(1) -0.178(5) 1.36 -2.47 0.144(11) 2.43(7)
Smo3 3.00 44.340 / 9 2.08(3) -0.49(1) -0.180(5) 1.38 -2.50 0.145(10) 2.40(7)
Smp3 3.00 38.890 / 9 2.05(3) -0.51(1) -0.182(6) 1.39 -2.53 0.146(9) 2.37(6)
Som3 3.00 36.360 / 9 2.18(3) -0.40(1) -0.045(5) 1.33 -1.89 0.127(10) 2.49(6)
Soo3 3.00 31.150 / 9 2.16(3) -0.40(1) -0.043(5) 1.34 -1.91 0.128(9) 2.47(6)
Sop3 3.00 26.420 / 9 2.14(3) -0.41(1) -0.041(5) 1.35 -1.92 0.129(8) 2.45(5)
Spm3 3.00 29.170 / 9 2.25(3) -0.32(1) 0.072(4) 1.30 -1.34 0.110(9) 2.54(5)
Spo3 3.00 25.220 / 9 2.24(3) -0.33(1) 0.075(4) 1.31 -1.35 0.111(9) 2.52(5)
Spp3 3.00 21.550 / 9 2.23(3) -0.34(1) 0.078(5) 1.31 -1.35 0.112(8) 2.51(5)
Sfm3 3.00 27.120 / 8 2.33(9) -0.24(9) 0.203(159) 1.27 -0.68(75) 0.090(61) 2.59(13)
Sfo3 3.00 24.190 / 8 2.31(10) -0.26(10) 0.180(175) 1.28 -0.82(82) 0.095(64) 2.57(14)
Sfp3 3.00 21.180 / 8 2.28(12) -0.28(11) 0.159(188) 1.29 -0.95(87) 0.099(65) 2.55(15)

Table B.4: Parameters from our combined fits to the nucleon mass and σ-term data. Keys in the first
column indicate the features of the fits. All keys start with S.. indicating that the σ-term data has been
included when fitting. Entries are ordered according to increasing (r0mπ)2max, as specified in column 2.
The χ2-value together with the number of degrees of freedom (ndf) is given in column 3. Columns 4 to
8 list the fit parameters M0, c1, er1(0.138MeV), c2 and c3 in units of r0. The corresponding estimates
for r0σ at the physical point and for r0 are given in column 9 and 10. Since r0 is not a fit parameter,

but has been iteratively fixed as explained in the text, the error for r0 is that of M̂N (r0 ·mphys
π )/Mphys

N .
Lines tagged with a ? indicate fits where χ2/ndf < 1.3. Parameters of these fits enter the weighted
averages given in the lines starting with “ave.“.
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Figure B.11: Values for r0σ at the physical point (left) and r0 (right) from the combined fits listed in
Table B.4. From top to bottom, panels are ordered according to a decreasing upper limit for (r0mπ)2.
Within each panel, data points are grouped with respect to the values chosen for c3 and l̄3: Different
(red) symbols refer to different values for c3 (circles: c3 = free; squares: c3 = −4.7+1.3; polygons:
c3 = −4.7; diamonds: c3 = −4.7-1.3, all in GeV−1), while triples of neighboring points (same symbol)
refer to different values of l̄3 = 3.2+0.8, 3.2, 3.2-0.8 (from top to bottom). Open symbols refer to poor
fits (χ2

r > 2.0), full symbols to good fits (χ2
r < 2.0) and black-framed full symbols to fits where χ2

r < 1.3.
If applicable, gray error bands are shown for weighted averages (green symbol at the bottom of each
band) of the black-framed points.
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key (r0mπ)2max χ2
r r0M0 c1/r0 er1/r

3
0 c2/r0 c3/r0 r0σphys r0 [1/GeV]

Nmo1 1.30 4.760 / 4 2.19(9) -0.39(6) -0.155(11) 1.33 -2.42 0.111(40) 2.48(10)
Noo1 1.30 3.510 / 4 2.23(9) -0.34(6) -0.030(11) 1.32 -1.88 0.103(35) 2.50(9)
Npo1 1.30 4.450 / 4 2.26(9) -0.29(6) 0.088(11) 1.31 -1.35 0.096(40) 2.53(10)

ave. 1.30 χ2
r < 1.3 2.23(9) -0.34(6) -0.032(11) — — 0.10(4) 2.50(10)

Nfo1 1.30 3.510 / 3 2.23(10) -0.34(8) -0.024(133) 1.32 -1.85(58) 0.103(50) 2.51(12)

Nmo2 1.60 5.280 / 6 2.20(7) -0.38(4) -0.153(8) 1.32 -2.41 0.109(23) 2.49(7)
Noo2 1.60 4.200 / 6 2.23(7) -0.34(4) -0.031(8) 1.32 -1.87 0.103(21) 2.51(6)
Npo2 1.60 5.170 / 6 2.26(7) -0.30(4) 0.086(7) 1.31 -1.35 0.097(24) 2.52(7)

ave. 1.60 χ2
r < 1.3 2.23(7) -0.34(4) -0.022(8) — — 0.103(22) 2.51(6)

Nfo2 1.60 4.200 / 5 2.23(8) -0.34(6) -0.029(132) 1.32 -1.87(58) 0.103(26) 2.51(7)

Nmo3 3.00 35.320 / 8 1.92(4) -0.57(1) -0.191(9) 1.47 -2.68 0.156(11) 2.24(8)
Noo3 3.00 17.010 / 8 2.04(4) -0.46(1) -0.030(8) 1.41 -2.00 0.138(9) 2.35(6)
Npo3 3.00 11.140 / 8 2.14(4) -0.37(1) 0.099(7) 1.36 -1.40 0.121(8) 2.43(4)
Nfo3 3.00 10.810 / 7 2.18(11) -0.34(10) 0.150(156) 1.34 -1.15(69) 0.114(43) 2.46(12)

Table B.5: Parameters from our fits to the nucleon mass alone. All keys start with N.. indicating
that no σ-term data has been included. The remaining character sequence has the same meaning as in
Table B.4.
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