185 research outputs found

    Le miracle de l’agneau néo-zélandais

    Full text link
    Ça y est, les fêtes de Pâques sont à nos portes. Au moment de passer à table, nous dégusterons l'agneau pascal … de Nouvelle-Zélande. Et ce, que nous soyons à Bruxelles, Paris, Rome ou Berlin. En effet, partout en Europe, cet agneau est actuellement proposé à des centaines de millions de consommateurs à un prix ridiculement bas, très largement inférieur à celui de l'agneau local , atteignant un record de 5,30 € le kg dans les hypermarchés français. [...

    Evolutionary optimisation of neural network models for fish collective behaviours in mixed groups of robots and zebrafish

    Full text link
    Animal and robot social interactions are interesting both for ethological studies and robotics. On the one hand, the robots can be tools and models to analyse animal collective behaviours, on the other hand, the robots and their artificial intelligence are directly confronted and compared to the natural animal collective intelligence. The first step is to design robots and their behavioural controllers that are capable of socially interact with animals. Designing such behavioural bio-mimetic controllers remains an important challenge as they have to reproduce the animal behaviours and have to be calibrated on experimental data. Most animal collective behavioural models are designed by modellers based on experimental data. This process is long and costly because it is difficult to identify the relevant behavioural features that are then used as a priori knowledge in model building. Here, we want to model the fish individual and collective behaviours in order to develop robot controllers. We explore the use of optimised black-box models based on artificial neural networks (ANN) to model fish behaviours. While the ANN may not be biomimetic but rather bio-inspired, they can be used to link perception to motor responses. These models are designed to be implementable as robot controllers to form mixed-groups of fish and robots, using few a priori knowledge of the fish behaviours. We present a methodology with multilayer perceptron or echo state networks that are optimised through evolutionary algorithms to model accurately the fish individual and collective behaviours in a bounded rectangular arena. We assess the biomimetism of the generated models and compare them to the fish experimental behaviours.Comment: 10 pages, 4 figure

    'Antibiotic footprint' as a communication tool to aid reduction of antibiotic consumption-authors' response

    Get PDF
    We thank Dominic Moran for describing the potential implications of our proposed antibiotic footprint and how the ecological footprint was originally defined.1 The ‘antibiotic footprint’ has been designed as a simple metric focusing on communication with the general public, healthcare professionals and policy makers to aid reduction of antibiotic consumptio

    Influenza Vaccination of Healthcare Workers: Critical Analysis of the Evidence for Patient Benefit Underpinning Policies of Enforcement

    Get PDF
    Background: Four cluster randomized controlled trials (cRCTs) conducted in long-term care facilities (LTCFs) have reported reductions in patient risk through increased healthcare worker (HCW) influenza vaccination. This evidence has led to expansive policies of enforcement that include all staff of acute care hospitals and other healthcare settings beyond LTCFs. We critique and quantify the cRCT evidence for indirect patient benefit underpinning policies of mandatory HCW influenza vaccination. Methods: Plausibility of the four cRCT findings attributing indirect patient benefits to HCW influenza vaccination was assessed by comparing percentage reductions in patient risk reported by the cRCTs to predicted values. Plausibly predicted values were derived according to the basic mathematical principle of dilution, taking into account HCW influenza vaccine coverage and the specificity of patient outcomes for influenza. Accordingly, predicted values were calculated as a function of relevant compound probabilities including vaccine efficacy (ranging 40–60% in HCWs and favourably assuming the same indirect protection conferred through them to patients) × change in proportionate HCW influenza vaccine coverage (as reported by each cRCT) × percentage of a given patient outcome (e.g. influenza-like illness (ILI) or all-cause mortality) plausibly due to influenza virus. The number needed to vaccinate (NNV) for HCWs to indirectly prevent patient death was recalibrated based on real patient data of hospital-acquired influenza, with adjustment for potential under-detection (5.2-fold), and using favourable assumptions of HCW-attributable risk (ranging 60–80%). Results: In attributing patient benefit to increased HCW influenza vaccine coverage, each cRCT was found to violate the basic mathematical principle of dilution by reporting greater percentage reductions with less influenza-specific patient outcomes (i.e., all-cause mortality > ILI > laboratory-confirmed influenza) and/or patient mortality reductions exceeding even favourably-derived predicted values by at least 6- to 15-fold. If extrapolated to all LTCF and hospital staff in the United States, the prior cRCT-claimed NNV of 8 would implausibly mean >200,000 and >675,000 patient deaths, respectively, could be prevented annually by HCW influenza vaccination, inconceivably exceeding total US population mortality estimates due to seasonal influenza each year, or during the 1918 pandemic, respectively. More realistic recalibration based on actual patient data instead shows that at least 6000 to 32,000 hospital workers would need to be vaccinated before a single patient death could potentially be averted. Conclusions: The four cRCTs underpinning policies of enforced HCW influenza vaccination attribute implausibly large reductions in patient risk to HCW vaccination, casting serious doubts on their validity. The impression that unvaccinated HCWs place their patients at great influenza peril is exaggerated. Instead, the HCW-attributable risk and vaccine-preventable fraction both remain unknown and the NNV to achieve patient benefit still requires better understanding. Although current scientific data are inadequate to support the ethical implementation of enforced HCW influenza vaccination, they do not refute approaches to support voluntary vaccination or other more broadly protective practices, such as staying home or masking when acutely illFunding support in the form of wages for Dr. Gaston De Serres was provided foremost by the Quebec Public Health Institute (Institut national de sante´ publique du Que´bec), Que´bec, Canada and in part by the Ontario Nurses’ Associatio

    Multilevel Parallelization of AutoDock 4.2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Virtual (computational) screening is an increasingly important tool for drug discovery. AutoDock is a popular open-source application for performing molecular docking, the prediction of ligand-receptor interactions. AutoDock is a serial application, though several previous efforts have parallelized various aspects of the program. In this paper, we report on a multi-level parallelization of AutoDock 4.2 (mpAD4).</p> <p>Results</p> <p>Using MPI and OpenMP, AutoDock 4.2 was parallelized for use on MPI-enabled systems and to multithread the execution of individual docking jobs. In addition, code was implemented to reduce input/output (I/O) traffic by reusing grid maps at each node from docking to docking. Performance of mpAD4 was examined on two multiprocessor computers.</p> <p>Conclusions</p> <p>Using MPI with OpenMP multithreading, mpAD4 scales with near linearity on the multiprocessor systems tested. In situations where I/O is limiting, reuse of grid maps reduces both system I/O and overall screening time. Multithreading of AutoDock's Lamarkian Genetic Algorithm with OpenMP increases the speed of execution of individual docking jobs, and when combined with MPI parallelization can significantly reduce the execution time of virtual screens. This work is significant in that mpAD4 speeds the execution of certain molecular docking workloads and allows the user to optimize the degree of system-level (MPI) and node-level (OpenMP) parallelization to best fit both workloads and computational resources.</p

    Fine-Scale Structure Analysis Shows Epidemic Patterns of Clonal Complex 95, a Cosmopolitan Escherichia coli Lineage Responsible for Extraintestinal Infection

    Get PDF
    The Escherichia coli lineage known as clonal complex 95 (CC95) is a cosmopolitan human-associated lineage responsible for a significant fraction of extraintestinal infections of humans. Whole-genome sequence data of 200 CC95 strains from various origins enabled determination of the CC95 pangenome. The pangenome analysis revealed that strains of the complex could be assigned to one of five subgroups that vary in their serotype, extraintestinal virulence, virulence gene content, and antibiotic resistance gene profile. A total of 511 CC95 strains isolated from humans living in France, Australia, and the United States were screened for their subgroup membership using a PCR-based method. The CC95 subgroups are nonrandomly distributed with respect to their geographic origin. The relative frequency of the subgroups was shown to change through time, although the nature of the changes varies with continent. Strains of the subgroups are also nonrandomly distributed with respect to source of isolation (blood, urine, or feces) and host sex. Collectively, the evidence indicates that although strains belonging to CC95 may be cosmopolitan, human movement patterns have been insufficient to homogenize the distribution of the CC95 subgroups. Rather, the manner in which CC95 strains evolve appears to vary both spatially and temporally. Although CC95 strains appeared globally as pandemic, fine-scale structure analysis shows epidemic patterns of the CC95 subgroups. Furthermore, the observation that the relative frequency of CC95 subgroups at a single locality has changed over time indicates that the relative fitness of the subgroups has changedThis material is based in part on work supported by Office of Research and Development, Medical Research Service, Department of Veterans Affairs (grant 1 I01 CX000920-01 to J.R.J.). This work was partially supported by a grant from the Fondation Pour la Recherche Médicale (Équipe FRM 2016, DEQ20161136698) to E.D

    The GEN-ERA toolbox: unified and reproducible workflows for research in microbial genomics

    Full text link
    Microbial culture collections play a key role in taxonomy by studying the diversity of their strains and providing well-characterized biological material to the scientific community for fundamental and applied research. These microbial resource centers thus need to implement new standards in species delineation, including whole-genome sequencing and phylogenomics. In this context, the genomic needs of the Belgian Coordinated Collections of Microorganisms (BCCM) were studied, resulting in the GEN-ERA toolbox, a unified cluster of bioinformatic workflows dedicated to both bacteria and small eukaryotes (e.g., yeasts). This public toolbox is designed for researchers without a specific training in bioinformatics (launched by a single command line). Hence, it facilitates all steps from genome downloading and quality assessment, including genomic contamination estimation, to tree reconstruction. It also offers workflows for average nucleotide identity comparisons and metabolic modeling. All the workflows are based on Singularity containers and Nextflow to increase reproducibility. The GEN-ERA toolbox can be used to infer completely reproducible comparative genomic and metabolic analyses on prokaryotes and small eukaryotes. Although designed for routine bioinformatics of culture collections, it can also be used by all researchers interested in microbial taxonomy, as exemplified by our case study on Gloeobacterales (Cyanobacteria). This study is published at https://doi.org/10.1093/gigascience/giad022GENER

    Complete exon sequencing of all known Usher syndrome genes greatly improves molecular diagnosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Usher syndrome (USH) combines sensorineural deafness with blindness. It is inherited in an autosomal recessive mode. Early diagnosis is critical for adapted educational and patient management choices, and for genetic counseling. To date, nine causative genes have been identified for the three clinical subtypes (USH1, USH2 and USH3). Current diagnostic strategies make use of a genotyping microarray that is based on the previously reported mutations. The purpose of this study was to design a more accurate molecular diagnosis tool.</p> <p>Methods</p> <p>We sequenced the 366 coding exons and flanking regions of the nine known USH genes, in 54 USH patients (27 USH1, 21 USH2 and 6 USH3).</p> <p>Results</p> <p>Biallelic mutations were detected in 39 patients (72%) and monoallelic mutations in an additional 10 patients (18.5%). In addition to biallelic mutations in one of the USH genes, presumably pathogenic mutations in another USH gene were detected in seven patients (13%), and another patient carried monoallelic mutations in three different USH genes. Notably, none of the USH3 patients carried detectable mutations in the only known USH3 gene, whereas they all carried mutations in USH2 genes. Most importantly, the currently used microarray would have detected only 30 of the 81 different mutations that we found, of which 39 (48%) were novel.</p> <p>Conclusions</p> <p>Based on these results, complete exon sequencing of the currently known USH genes stands as a definite improvement for molecular diagnosis of this disease, which is of utmost importance in the perspective of gene therapy.</p
    corecore