56 research outputs found

    Tracing Forensic Artifacts from USB-Bound Computing Environments on Windows Hosts

    Get PDF

    A Strategic Model for Forensic Readiness

    Get PDF
    Forensic readiness has been defined as: ‘…the capability of an organisation to use digital evidence in a forensic investigation’. For businesses, especially medium or small enterprises, gaining this capability can seem time consuming and expensive: it may involve a number of processes, it may require new hardware and software and people with specialised skill sets may need to be hired in order to implement any plan. Yet developing and maintaining a forensic readiness capability is vital in the digital age. Fraud and cybercrime cost almost £11bn in the UK alone last year. Across the European Union, the national annual cost of cybercrime now accounts for 0.41% of GDP. Recent figures have also shown that up to 62% of digital incidents are caused by insiders, either accidentally or knowingly. An astonishing 91% of cybersecurity attacks begin with a single email. This research proposes a structured, strategic approach to forensic readiness for businesses that is economic to implement and run. It is based on people and processes rather than complex electronic systems. Key to this approach is a firm’s best asset - its own staff. It is theorised that the foundation stone of forensic readiness is a strong internal security culture. In order to achieve this aim, a unique, scalable model for efficient and inclusive planning is put forward with a reporting construct which aims to assure company-wide involvement

    DEEP: Extending the Digital Forensics Process Model for Criminal Investigations

    Get PDF
    The importance of high quality, reliable forensic analysis –an issue that is central to the delivery of justice– has become a topic for marked debate with scientists, specialists and government bodies calling for improved standards and procedures. At the same time, Law Enforcement agencies are under pressure to cut the cost of criminal investigations. The detrimental impact that this has had on all forensic disciplines has been noted internationally, with the UK’s House of Lords warning that if the trend continues, crimes could go unsolved and miscarriages of justice may increase. The pivotal role that digital forensics plays in investigating and solving modern crimes is widely acknowledged: in Britain, the police estimate it features in 90% of cases. In fact, today’s law enforcement officers play a key part in the recovery, handling and automated processing of digital devices yet they are often poorly trained to do so. They are also left to interpret outputs, with the results being presented in court. This, it is argued, is a dangerous anomaly and points to a significant gap in the current, four-stage digital forensics process model (DFPM). This paper presents an extension to that model, the Digital Evidence Enhanced Process (DEEP), with the aim of fine-tuning the mechanism and ensuring that all digital evidence is scrutinised by a qualified digital forensics analyst. The consequence of adopting DEEP in actual criminal investigations will be to ensure that all digital evidence is analysed and evaluated to the highest professional and technical competency standards, resulting in the enhanced reliability of digital evidence presented in court which will serve the cause of justice in terms of reduced instances of associated unsafe convictions and/or unjustified exculpations

    Indirect Effects of Bottom Fishing on the Productivity of Marine Fish

    Get PDF
    One quarter of marine fish production is caught with bottom trawls and dredges on continental shelves around the world. Towed bottom-fishing gears typically kill 20-50 per cent of the benthic invertebrates in their path, depending on gear type, substrate and vulnerability of particular taxa. Particularly vulnerable are epifaunal species, which stabilize the sediment and provide habitat for benthic invertebrates. To identify the habitats, fisheries or target species most likely to be affected, we review evidence of the indirect effects of bottom fishing on fish production. Recent studies have found differences in the diets of certain species in relation to bottom fishing intensity, thereby linking demersal fish to their benthic habitats at spatial scales of ~10 km. Bottom fishing affects diet composition and prey quality rather than the amount of prey consumed; scavenging of discarded by-catch makes only a small contribution to yearly food intake. Flatfish may benefit from light trawling levels on sandy seabeds, while higher-intensity trawling on more vulnerable habitats has a negative effect. Models suggest that reduction in the carrying capacity of habitats by bottom fishing could lead to lower equilibrium yield and a lower level of fishing mortality to obtain maximum yield. Trawling effort is patchily distributed - small fractions of fishing grounds are heavily fished, while large fractions are lightly fished or unfished. This patchiness, coupled with the foraging behaviour of demersal fish, may mitigate the indirect effects of bottom fishing on fish productivity. Current research attempts to scale up these localized effects to the population level

    Investigating the effects of mobile bottom fishing on benthic biota:A systematic review protocol

    Get PDF
    Background Mobile bottom fishing, such as trawling and dredging, is the most widespread direct human impact on marine benthic systems. Knowledge of the impacts of different gear types on different habitats, the species most sensitive to impacts and the potential for habitats to recover are often needed to inform implementation of an ecosystem approach to fisheries and strategies for biodiversity conservation. This knowledge helps to identify management options that maximise fisheries yield whilst minimising negative impacts on benthic systems. Methods/design The methods are designed to identify and collate evidence from experimental studies (e.g. before/after, control/impact) and comparative studies (spanning a gradient of fishing intensity) to identify changes in state (numbers, biomass, diversity etc.) of benthic biota (flora and fauna), resulting from a variety of mobile bottom fishing scenarios. The primary research question that the outputs will be used to address is: “to what extent does a given intensity of bottom fishing affect the abundance and/or diversity of benthic biota?” Due to the variety of gear and habitat types studied, the primary question will be closely linked with secondary questions. These include: “how does the effect of bottom fishing on various benthic biota metrics (species, faunal type, trait, taxon etc.) vary with (1) gear type and (2) habitat, and (3) gear type-habitat interactions?” and (4) “how might properties of the community and environment affect the resilience (and recovery potential) of a community to bottom fishing?

    Trawl impacts on the relative status of biotic communities of seabed sedimentary habitats in 24 regions worldwide

    Get PDF
    Bottom trawling is widespread globally and impacts seabed habitats. However, risks from trawling remain unquantified at large scales in most regions. We address these issues by synthesizing evidence on the impacts of different trawl-gear types, seabed recovery rates, and spatial distributions of trawling intensity in a quantitative indicator of biotic status (relative amount of pretrawling biota) for sedimentary habitats, where most bottom-trawling occurs, in 24 regions worldwide. Regional average status relative to an untrawled state (=1) was high (>0.9) in 15 regions, but 0.8. These assessments are first order, based on parameters estimated with uncertainty from meta-analyses; we recommend regional analyses to refine parameters for local specificity. Nevertheless, our results are sufficiently robust to highlight regions needing more effective management to reduce exploitation and improve stock sustainability and seabed environmental status—while also showing seabed status was high (>0.95) in regions where catches of trawled fish stocks meet accepted benchmarks for sustainable exploitation, demonstrating that environmental benefits accrue from effective fisheries management. Furthermore, regional seabed status was related to the proportional area swept by trawling, enabling preliminary predictions of regional status when only the total amount of trawling is known. This research advances seascape-scale understanding of trawl impacts in regions around the world, enables quantitative assessment of sustainability risks, and facilitates implementation of an ecosystem approach to trawl fisheries management globally

    Selection of indicators for assessing and managing the impacts of bottom trawling on seabed habitats

    Get PDF
    Bottom trawl fisheries are the most widespread\ua0source of anthropogenic physical disturbance to seabed habitats. Development of fisheries-, conservation- and ecosystem-based management strategies requires the selection of indicators of the impact of bottom trawling on the state of benthic biota. Many indicators have been proposed, but no rigorous test of a range of candidate indicators against nine commonly agreed criteria (concreteness, theoretical basis, public awareness, cost, measurement, historical data, sensitivity, responsiveness, specificity) has been performed. Here, we collated data from 41 studies that compared the benthic biota in trawled areas with those in control locations (that were either not trawled or trawled infrequently), examining seven potential indicators (numbers and biomass for individual taxa and whole communities, evenness, Shannon–Wiener diversity and species richness) to assess their performance against the set of nine criteria. The effects of trawling were stronger on whole-community numbers and biomass than for individual taxa. Species richness was also negatively affected by trawling but other measures of diversity were not. Community numbers and biomass met all criteria, taxa numbers and biomass and species richness satisfied most criteria, but evenness and Shannon–Wiener diversity did not respond to trawling and only met few criteria, and hence are not suitable state indicators of the effect of bottom trawling. Synthesis and applications. An evaluation of each candidate indicator against a commonly agreed suite of desirable properties coupled with the outputs of our meta-analysis showed that whole-community numbers of individuals and biomass are the most suitable indicators of bottom trawling impacts as they performed well on all criteria. Strengths of these indicators are that they respond strongly to trawling, relate directly to ecosystem functioning and are straightforward to measure. Evenness and Shannon–Wiener diversity are not responsive to trawling and unsuitable for the monitoring and assessment of bottom trawl impacts

    Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance

    Get PDF
    Bottom trawling is the most widespread human activity affecting seabed habitats. Here, we collate all available data for experimental and comparative studies of trawling impacts on whole communities of seabed macroinvertebrates on sedimentary habitats and develop widely applicable methods to estimate depletion and recovery rates of biota after trawling. Depletion of biota and trawl penetration into the seabed are highly correlated. Otter trawls caused the least depletion, removing 6% of biota per pass and penetrating the seabed on average down to 2.4 cm, whereas hydraulic dredges caused the most depletion, removing 41% of biota and penetrating the seabed on average 16.1 cm. Median recovery times posttrawling (from 50 to 95% of unimpacted biomass) ranged between 1.9 and 6.4 y. By accounting for the effects of penetration depth, environmental variation, and uncertainty, the models explained much of the variability of depletion and recovery estimates from single studies. Coupled with large-scale, high-resolution maps of trawling frequency and habitat, our estimates of depletion and recovery rates enable the assessment of trawling impacts on unprecedented spatial scales
    corecore