521 research outputs found

    Foundation technology for developing an autonomous Complex Dwell-time Diagnostics (CDD) Tool

    Full text link
    © 2015 ATRF, Commonwealth of Australia. All rights reserved. As the demand for rail services grows, intense pressure is placed on stations at the centre of rail networks where large crowds of rail passengers alight and board trains during peak periods. The time it takes for this to occur — the dwell-time — can become extended when high numbers of people congest and cross paths. Where a track section is operating at short headways, extended dwell-times can cause delays to scheduled services that can in turn cause a cascade of delays that eventually affect entire networks. Where networks are operating at close to their ceiling capacity, dwell-time management is essential and in most cases requires the introduction of special operating procedures. This paper details our work towards developing an autonomous Complex Dwell-time Diagnostics (CDD) Tool — a low cost technology, capable of providing information on multiple dwell events in real time. At present, rail operators are not able to access reliable and detailed enough data on train dwell operations and passenger behaviour. This is because much of the necessary data has to be collected manually. The lack of rich data means train crews and platform staff are not empowered to do all they could to potentially stabilise and reduce dwell-times. By better supporting service providers with high quality data analysis, the number of viable train paths can be increased, potentially delaying the need to invest in high cost hard infrastructures such as additional tracks. The foundation technology needed to create CDD discussed in this paper comprises a 3D image data based autonomous system capable of detecting dwell events during operations and then create business information that can be accessed by service providers in real time during rail operations. Initial tests of the technology have been carried out at Brisbane Central rail station. A discussion of the results to date is provided and their implications for next steps

    Damage profiles of ultrashallow B implants in Si and the Kinchin-Pease relationship

    Get PDF
    Damage distributions resulting from 0.1-2 keV B+ implantation at room temperature into Si(100) to doses ranging from 1×1014 to 2×1016 cm-2 have been determined using high-depth-resolution medium-energy-ion scattering in the double alignment mode. For all B+ doses and energies investigated a 3-4 nm deep, near-surface damage peak was observed while for energies at and above 1 keV, a second damage peak developed beyond the mean projected B+ ion range of 5.3 nm. This dual damage peak structure is due to dynamic annealing processes. For the near-surface peak it is observed that, at the lowest implant energies and doses used, for which recombination processes are suppressed due to the proximity of the surface capturing interstitials, the value of the damage production yield for low-mass B+ ions is equal or greater than the modified Kinchin-Pease model predictions [G. H. Kinchin and R. S. Pease, Rep. Prog. Phys. 18, 1 (1955); G. H. Kinchin and R. S. Pease, J. Nucl. Energy 1, 200 (1955); P. Sigmund, Appl. Phys. Lett. 14, 114 (1969)]

    Three dimensional reconstruction to visualize atrial fibrillation activation patterns on curved atrial geometry

    Get PDF
    Background: The rotational activation created by spiral waves may be a mechanism for atrial fibrillation (AF), yet it is unclear how activation patterns obtained from endocardial baskets are influenced by the 3D geometric curvature of the atrium or 'unfolding' into 2D maps. We develop algorithms that can visualize spiral waves and their tip locations on curved atrial geometries. We use these algorithms to quantify differences in AF maps and spiral tip locations between 3D basket reconstructions, projection onto 3D anatomical shells and unfolded 2D surfaces. Methods: We tested our algorithms in N = 20 patients in whom AF was recorded from 64-pole baskets (Abbott, CA). Phase maps were generated by non-proprietary software to identify the tips of spiral waves, indicated by phase singularities. The number and density of spiral tips were compared in patient-specific 3D shells constructed from the basket, as well as 3D maps from clinical electroanatomic mapping systems and 2D maps. Results: Patients (59.4±12.7 yrs, 60% M) showed 1.7±0.8 phase singularities/patient, in whom ablation terminated AF in 11/20 patients (55%). There was no difference in the location of phase singularities, between 3D curved surfaces and 2D unfolded surfaces, with a median correlation coefficient between phase singularity density maps of 0.985 (0.978-0.990). No significant impact was noted by phase singularities location in more curved regions or relative to the basket location (p>0.1). Conclusions: AF maps and phase singularities mapped by endocardial baskets are qualitatively and quantitatively similar whether calculated by 3D phase maps on patient-specific curved atrial geometries or in 2D. Phase maps on patient-specific geometries may be easier to interpret relative to critical structures for ablation planning

    The nature of Ordovician limestone-marl alternations in the Oslo-Asker District (Norway):witnesses of primary glacio-eustasy or diagenetic rhythms?

    Get PDF
    Ordovician limestone-marl alternations in the Oslo-Asker District have been interpreted as signaling glacio-eustatic lowstands, which would support a prolonged “Early Palaeozoic Icehouse”. However, these rhythmites could alternatively reflect differential diagenesis, without sedimentary trigger. Here, we test both hypotheses through one Darriwilian and three Katian sections. Our methodology consists of a bed-by-bed analysis of palynological (chitinozoan) and geochemical (XRF) data, to evaluate whether the limestone/marl couplets reflect an original cyclic signal. The results reveal similar palynomorph assemblages in limestones and marls. Exceptions, which could be interpreted as reflecting palaeoclimatological fluctuations, exist at the species level: Ancyrochitina bornholmensis seems to be more abundant in the marl samples from the lower Frognerkilen Formation on Nakkholmen Island. However, these rare cases where chitinozoans differ between limestone/marl facies are deemed insufficient for the identification of original cyclicity. The geochemical data show a near-perfect correlation between insoluble elements in the limestone and the marls, which indicates a similar composition of the potential precursor sediment, also in the Frognerkilen Formation. This is consistent with the palynological data. Although an original cyclic pattern could still be recorded by other, uninvestigated parameters, our palaeontological and geochemical data combined do not support the presence of such a signal

    Analysis of Resonant Inelastic X-Ray Scattering in Stripe-Ordered Nickelate

    Full text link
    We analyze theoretically the resonant inelastic x-ray scattering (RIXS) at the Ni K edge in the stripe-ordered state of La_{2-x}Sr_xNiO_4 at x=1/3. In the calculation of RIXS spectra, the stripe-ordered ground state is described within the Hartree-Fock approximation by using a realistic tight-binding model for Ni3d\gamma and O2p_{x, y} orbitals, and the electron correlations in the electronic excitation processes are taken into account within the random-phase approximation. The calculated RIXS spectrum shows a tail toward the low-energy region when the momentum transfer of photons equals the stripe vector Q, being consistent with a recent experimental result. The origin of this anomalous momentum dependence of RIXS spectra is discussed microscopically.Comment: 23 pages, 9 figures. Published version in J. Phys. Soc. Jp

    Effect of comorbidities on survival in patients > 80 years of age at onset of renal replacement therapy: data from the ERA-EDTA Registry

    Get PDF
    Background. The number of elderly patients on renal replacement therapy (RRT) is increasing. The survival and quality of life of these patients may be lower if they have multiple comorbidities at the onset of RRT. The aim of this study was to explore whether the effect of comorbidities on survival is similar in elderly RRT patients compared with younger ones. Methods. Included were 9333 patients >= 80years of age and 48352 patients 20-79 years of age starting RRT between 2010 and 2015 from 15 national or regional registries submitting data to the European Renal Association-European Dialysis and Transplantation Association Registry. Patients were followed until death or the end of 2016. Survival was assessed by Kaplan-Meier curves and the relative risk of death associated with comorbidities was assessed by Cox regression analysis. Results. Patients >= 80years of age had a greater comorbidity burden than younger patients. However, relative risks of death associated with all studied comorbidities (diabetes, ischaemic heart disease, chronic heart failure, cerebrovascular disease, peripheral vascular disease and malignancy) were significantly lower in elderly patients compared with younger patients. Also, the increase in absolute mortality rates associated with an increasing number of comorbidities was smaller in elderly patients. Conclusions. Comorbidities are common in elderly patients who enter RRT, but the risk of death associated with comorbidities is less than in younger patients. This should be taken into account when assessing the prognosis of elderly RRT patients.Peer reviewe

    The CCR4-NOT Complex Physically and Functionally Interacts with TRAMP and the Nuclear Exosome

    Get PDF
    BACKGROUND: Ccr4-Not is a highly conserved multi-protein complex consisting in yeast of 9 subunits, including Not5 and the major yeast deadenylase Ccr4. It has been connected functionally in the nucleus to transcription by RNA polymerase II and in the cytoplasm to mRNA degradation. However, there has been no evidence so far that this complex is important for RNA degradation in the nucleus. METHODOLOGY/PRINCIPAL FINDINGS: In this work we point to a new role for the Ccr4-Not complex in nuclear RNA metabolism. We determine the importance of the Ccr4-Not complex for the levels of non-coding nuclear RNAs, such as mis-processed and polyadenylated snoRNAs, whose turnover depends upon the nuclear exosome and TRAMP. Consistently, mutation of both the Ccr4-Not complex and the nuclear exosome results in synthetic slow growth phenotypes. We demonstrate physical interactions between the Ccr4-Not complex and the exosome. First, Not5 co-purifies with the exosome. Second, several exosome subunits co-purify with the Ccr4-Not complex. Third, the Ccr4-Not complex is important for the integrity of large exosome-containing complexes. Finally, we reveal a connection between the Ccr4-Not complex and TRAMP through the association of the Mtr4 helicase with the Ccr4-Not complex and the importance of specific subunits of Ccr4-Not for the association of Mtr4 with the nuclear exosome subunit Rrp6. CONCLUSIONS/SIGNIFICANCE: We propose a model in which the Ccr4-Not complex may provide a platform contributing to dynamic interactions between the nuclear exosome and its co-factor TRAMP. Our findings connect for the first time the different players involved in nuclear and cytoplasmic RNA degradation
    corecore