136 research outputs found

    Localization of dysfunctional tight junctions in Salmonella enterica serovar Typhimurium-infected epithelial layers

    Get PDF
    Infection of polarized MDCK epithelial layers by Salmonella enterica serovar Typhimurium is accompanied by increased tight junction permeability and by contraction of perijunctional actinomyosin. We localized dysfunctional tight junctions in serovar Typhimurium-infected MDCK layers by imaging apical-basolateral intramembrane diffusion of fluorescent lipid and found that loss of the apical-basolateral diffusion barrier (tight junction fence function) was most marked in areas of prominent perijunctional contraction. The protein kinase inhibitor staurosporine prevented perijunctional contraction but did not reverse the effects of serovar Typhimurium on tight junction barrier function. Hence, perijunctional contraction is not required for Salmonella-induced tight junction dysfunction and this epithelial response to infection may be multifactorial.68127202720

    Luminal Content Of Small Intestine From Prediabetic Mice Induces Epithelial Barrier Disruption In Caco-2 Monolayers In Vitro.

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)27FAPESP/Brazil [2015/25442-1, 2013/15767-0]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Annual Meeting of the American-Society-for-Cell-Biology (ASCB)DEC 03-07, 2016San Francisco, C

    E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet

    Get PDF
    Background/Aims: The efficient secretion of insulin from beta-cells requires extensive intra-islet communication. The cell surface adhesion protein epithelial (E)-cadherin (ECAD) establishes and maintains epithelial tissues such as the islets of Langerhans. In this study, the role of ECAD in regulating insulin secretion from pseudoislets was investigated. Methods: The effect of an immuno-neutralising ECAD on gross morphology, cytosolic calcium signalling, direct cell-to-cell communication and insulin secretion was assessed by fura-2 microfluorimetry, Lucifer Yellow dye injection and insulin ELISA in an insulin-secreting model system. Results: Antibody blockade of ECAD reduces glucose-evoked changes in [Ca2+](i) and insulin secretion. Neutralisation of ECAD causes a breakdown in the glucose-stimulated synchronicity of calcium oscillations between discrete regions within the pseudoislet, and the transfer of dye from an individual cell within a cell cluster is attenuated in the absence of ECAD ligation, demonstrating that gap junction communication is disrupted. The functional consequence of neutralising ECAD is a significant reduction in insulin secretion. Conclusion: Cell adhesion via ECAD has distinct roles in the regulation of intercellular communication between beta-cells within islets, with potential repercussions for insulin secretion. Copyright (C) 2007 S. Karger AG, Basel

    Pig-to-Nonhuman Primates Pancreatic Islet Xenotransplantation: An Overview

    Get PDF
    The therapy of type 1 diabetes is an open challenging problem. The restoration of normoglycemia and insulin independence in immunosuppressed type 1 diabetic recipients of islet allotransplantation has shown the potential of a cell-based diabetes therapy. Even if successful, this approach poses a problem of scarce tissue supply. Xenotransplantation can be the answer to this limited donor availability and, among possible candidate tissues for xenotransplantation, porcine islets are the closest to a future clinical application. Xenotransplantation, with pigs as donors, offers the possibility of using healthy, living, and genetically modified islets from pathogen-free animals available in unlimited number of islets. Several studies in the pig-to-nonhuman primate model demonstrated the feasibility of successful preclinical islet xenotransplantation and have provided insights into the critical events and possible mechanisms of immune recognition and rejection of xenogeneic islet grafts. Particularly promising results in the achievement of prolonged insulin independence were obtained with newly developed, genetically modified pigs islets able to produce immunoregulatory products, using different implantation sites, and new immunotherapeutic strategies. Nonetheless, further efforts are needed to generate additional safety and efficacy data in nonhuman primate models to safely translate these findings into the clinic

    TAT-Mediated Transduction of MafA Protein In Utero Results in Enhanced Pancreatic Insulin Expression and Changes in Islet Morphology

    Get PDF
    Alongside Pdx1 and Beta2/NeuroD, the transcription factor MafA has been shown to be instrumental in the maintenance of the beta cell phenotype. Indeed, a combination of MafA, Pdx1 and Ngn3 (an upstream regulator of Beta2/NeuroD) was recently reported to lead to the effective reprogramming of acinar cells into insulin-producing beta cells. These experiments set the stage for the development of new strategies to address the impairment of glycemic control in diabetic patients. However, the clinical applicability of reprogramming in this context is deemed to be poor due to the need to use viral vehicles for the delivery of the above factors. Here we describe a recombinant transducible version of the MafA protein (TAT-MafA) that penetrates across cell membranes with an efficiency of 100% and binds to the insulin promoter in vitro. When injected in utero into living mouse embryos, TAT-MafA significantly up-regulates target genes and induces enhanced insulin production as well as cytoarchitectural changes consistent with faster islet maturation. As the latest addition to our armamentarium of transducible proteins (which already includes Pdx1 and Ngn3), the purification and characterization of a functional TAT-MafA protein opens the door to prospective therapeutic uses that circumvent the use of viral delivery. To our knowledge, this is also the first report on the use of protein transduction in utero

    Modulation of paracellular permeability and intercellular junctions in cultured epithelia

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX188282 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore