113 research outputs found

    Interactive effects of herbivory and substrate orientation on algal community dynamics on a coral reef

    Get PDF
    Herbivory is a significant driver of algal community dynamics on coral reefs. However, abiotic factors such as the complexity and orientation of the benthos often mediate the impact of herbivores on benthic communities. We experimentally evaluated the independent and interactive effects of substrate orientation and herbivorous fishes on algal community dynamics on a coral reef in the Florida Keys, USA. We created horizontal and vertical substrates, mimicking the trend in the reduction of vertical surfaces of coral reefs, to assess how algal communities developed either with herbivory (open areas) or without herbivory (herbivore exclosures). We found that substrate orientation was the dominant influence on macroalgal community composition. Herbivores had little impact on community development of vertical substrates as crustose algae dominated these substrates regardless of being in exclosures or open areas. In contrast, herbivores strongly impacted communities on horizontal substrates, with upright macroalgae (e.g., Dictyota spp., articulated coralline algae) dominating herbivore exclosures, while filamentous turf algae and sediment dominated open areas. Outside of exclosures, differences between vertical and horizontal substrates exposed to herbivores persisted despite similar intensity of herbivory. Our results suggest that the orientation of the reef benthos has an important impact on benthic communities. On vertical surfaces, abiotic factors may be more important for structuring algal communities while herbivory may be more important for controlling algal dynamics in flatter areas. Thus, the decline in structural complexity of Caribbean coral reefs and the flattening of reef substrates may fundamentally alter the impact that herbivores have on benthic community dynamics

    Metabolic Reconstruction and Modeling of Nitrogen Fixation in Rhizobium etli

    Get PDF
    Rhizobiaceas are bacteria that fix nitrogen during symbiosis with plants. This symbiotic relationship is crucial for the nitrogen cycle, and understanding symbiotic mechanisms is a scientific challenge with direct applications in agronomy and plant development. Rhizobium etli is a bacteria which provides legumes with ammonia (among other chemical compounds), thereby stimulating plant growth. A genome-scale approach, integrating the biochemical information available for R. etli, constitutes an important step toward understanding the symbiotic relationship and its possible improvement. In this work we present a genome-scale metabolic reconstruction (iOR363) for R. etli CFN42, which includes 387 metabolic and transport reactions across 26 metabolic pathways. This model was used to analyze the physiological capabilities of R. etli during stages of nitrogen fixation. To study the physiological capacities in silico, an objective function was formulated to simulate symbiotic nitrogen fixation. Flux balance analysis (FBA) was performed, and the predicted active metabolic pathways agreed qualitatively with experimental observations. In addition, predictions for the effects of gene deletions during nitrogen fixation in Rhizobia in silico also agreed with reported experimental data. Overall, we present some evidence supporting that FBA of the reconstructed metabolic network for R. etli provides results that are in agreement with physiological observations. Thus, as for other organisms, the reconstructed genome-scale metabolic network provides an important framework which allows us to compare model predictions with experimental measurements and eventually generate hypotheses on ways to improve nitrogen fixation

    Nonlinear software sensor for monitoring genetic regulation processes with noise and modeling errors

    Full text link
    Nonlinear control techniques by means of a software sensor that are commonly used in chemical engineering could be also applied to genetic regulation processes. We provide here a realistic formulation of this procedure by introducing an additive white Gaussian noise, which is usually found in experimental data. Besides, we include model errors, meaning that we assume we do not know the nonlinear regulation function of the process. In order to illustrate this procedure, we employ the Goodwin dynamics of the concentrations [B.C. Goodwin, Temporal Oscillations in Cells, (Academic Press, New York, 1963)] in the simple form recently applied to single gene systems and some operon cases [H. De Jong, J. Comp. Biol. 9, 67 (2002)], which involves the dynamics of the mRNA, given protein, and metabolite concentrations. Further, we present results for a three gene case in co-regulated sets of transcription units as they occur in prokaryotes. However, instead of considering their full dynamics, we use only the data of the metabolites and a designed software sensor. We also show, more generally, that it is possible to rebuild the complete set of nonmeasured concentrations despite the uncertainties in the regulation function or, even more, in the case of not knowing the mRNA dynamics. In addition, the rebuilding of concentrations is not affected by the perturbation due to the additive white Gaussian noise and also we managed to filter the noisy output of the biological systemComment: 21 pages, 7 figures; also selected in vjbio of August 2005; this version corrects a misorder in the last three references of the published versio

    COLOMBOS v3.0 : leveraging gene expression compendia for cross-species analyses

    Get PDF
    COLOMBOS is a database that integrates publicly available transcriptomics data for several prokaryotic model organisms. Compared to the previous version it has more than doubled in size, both in terms of species and data available. The manually curated condition annotation has been overhauled as well, giving more complete information about samples' experimental conditions and their differences. Functionality-wise cross-species analyses now enable users to analyse expression data for all species simultaneously, and identify candidate genes with evolutionary conserved expression behaviour. All the expression-based query tools have undergone a substantial improvement, overcoming the limit of enforced co-expression data retrieval and instead enabling the return of more complex patterns of expression behaviour. COLOMBOS is freely available through a web application at http://colombos.net/. The complete database is also accessible via REST API or downloadable as tab-delimited text files

    EcoCyc: A comprehensive view of Escherichia coli biology

    Get PDF
    EcoCyc (http://EcoCyc.org) provides a comprehensive encyclopedia of Escherichia coli biology. EcoCyc integrates information about the genome, genes and gene products; the metabolic network; and the regulatory network of E. coli. Recent EcoCyc developments include a new initiative to represent and curate all types of E. coli regulatory processes such as attenuation and regulation by small RNAs. EcoCyc has started to curate Gene Ontology (GO) terms for E. coli and has made a dataset of E. coli GO terms available through the GO Web site. The curation and visualization of electron transfer processes has been significantly improved. Other software and Web site enhancements include the addition of tracks to the EcoCyc genome browser, in particular a type of track designed for the display of ChIP-chip datasets, and the development of a comparative genome browser. A new Genome Omics Viewer enables users to paint omics datasets onto the full E. coli genome for analysis. A new advanced query page guides users in interactively constructing complex database queries against EcoCyc. A Macintosh version of EcoCyc is now available. A series of Webinars is available to instruct users in the use of EcoCyc

    Automatic reconstruction of a bacterial regulatory network using Natural Language Processing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Manual curation of biological databases, an expensive and labor-intensive process, is essential for high quality integrated data. In this paper we report the implementation of a state-of-the-art Natural Language Processing system that creates computer-readable networks of regulatory interactions directly from different collections of abstracts and full-text papers. Our major aim is to understand how automatic annotation using Text-Mining techniques can complement manual curation of biological databases. We implemented a rule-based system to generate networks from different sets of documents dealing with regulation in <it>Escherichia coli </it>K-12.</p> <p>Results</p> <p>Performance evaluation is based on the most comprehensive transcriptional regulation database for any organism, the manually-curated RegulonDB, 45% of which we were able to recreate automatically. From our automated analysis we were also able to find some new interactions from papers not already curated, or that were missed in the manual filtering and review of the literature. We also put forward a novel Regulatory Interaction Markup Language better suited than SBML for simultaneously representing data of interest for biologists and text miners.</p> <p>Conclusion</p> <p>Manual curation of the output of automatic processing of text is a good way to complement a more detailed review of the literature, either for validating the results of what has been already annotated, or for discovering facts and information that might have been overlooked at the triage or curation stages.</p

    EcoCyc: a comprehensive database of Escherichia coli biology

    Get PDF
    EcoCyc (http://EcoCyc.org) is a comprehensive model organism database for Escherichia coli K-12 MG1655. From the scientific literature, EcoCyc captures the functions of individual E. coli gene products; their regulation at the transcriptional, post-transcriptional and protein level; and their organization into operons, complexes and pathways. EcoCyc users can search and browse the information in multiple ways. Recent improvements to the EcoCyc Web interface include combined gene/protein pages and a Regulation Summary Diagram displaying a graphical overview of all known regulatory inputs to gene expression and protein activity. The graphical representation of signal transduction pathways has been updated, and the cellular and regulatory overviews were enhanced with new functionality. A specialized undergraduate teaching resource using EcoCyc is being developed

    Considering Intra-individual Genetic Heterogeneity to Understand Biodiversity

    Get PDF
    In this chapter, I am concerned with the concept of Intra-individual Genetic Hetereogeneity (IGH) and its potential influence on biodiversity estimates. Definitions of biological individuality are often indirectly dependent on genetic sampling -and vice versa. Genetic sampling typically focuses on a particular locus or set of loci, found in the the mitochondrial, chloroplast or nuclear genome. If ecological function or evolutionary individuality can be defined on the level of multiple divergent genomes, as I shall argue is the case in IGH, our current genetic sampling strategies and analytic approaches may miss out on relevant biodiversity. Now that more and more examples of IGH are available, it is becoming possible to investigate the positive and negative effects of IGH on the functioning and evolution of multicellular individuals more systematically. I consider some examples and argue that studying diversity through the lens of IGH facilitates thinking not in terms of units, but in terms of interactions between biological entities. This, in turn, enables a fresh take on the ecological and evolutionary significance of biological diversity

    Integrated Carbon Budget Models for the Everglades Terrestrial-Coastal-Oceanic Gradient: Current Status and Needs for Inter-Site Comparisons

    Get PDF
    Recent studies suggest that coastal ecosystems can bury significantly more C than tropical forests, indicating that continued coastal development and exposure to sea level rise and storms will have global biogeochemical consequences. The Florida Coastal Everglades Long Term Ecological Research (FCE LTER) site provides an excellent subtropical system for examining carbon (C) balance because of its exposure to historical changes in freshwater distribution and sea level rise and its history of significant long-term carbon-cycling studies. FCE LTER scientists used net ecosystem C balance and net ecosystem exchange data to estimate C budgets for riverine mangrove, freshwater marsh, and seagrass meadows, providing insights into the magnitude of C accumulation and lateral aquatic C transport. Rates of net C production in the riverine mangrove forest exceeded those reported for many tropical systems, including terrestrial forests, but there are considerable uncertainties around those estimates due to the high potential for gain and loss of C through aquatic fluxes. C production was approximately balanced between gain and loss in Everglades marshes; however, the contribution of periphyton increases uncertainty in these estimates. Moreover, while the approaches used for these initial estimates were informative, a resolved approach for addressing areas of uncertainty is critically needed for coastal wetland ecosystems. Once resolved, these C balance estimates, in conjunction with an understanding of drivers and key ecosystem feedbacks, can inform cross-system studies of ecosystem response to long-term changes in climate, hydrologic management, and other land use along coastlines
    corecore