31 research outputs found

    Features of Muon Arrival Time Distributions of High Energy EAS at Large Distances From the Shower Axis

    Get PDF
    In view of the current efforts to extend the KASCADE experiment (KASCADE-Grande) for observations of Extensive Air Showers (EAS) of primary energies up to 1 EeV, the features of muon arrival time distributions and their correlations with other observable EAS quantities have been scrutinised on basis of high-energy EAS, simulated with the Monte Carlo code CORSIKA and using in general the QGSJET model as generator. Methodically various correlations of adequately defined arrival time parameters with other EAS parameters have been investigated by invoking non-parametric methods for the analysis of multivariate distributions, studying the classification and misclassification probabilities of various observable sets. It turns out that adding the arrival time information and the multiplicity of muons spanning the observed time distributions has distinct effects improving the mass discrimination. A further outcome of the studies is the feature that for the considered ranges of primary energies and of distances from the shower axis the discrimination power of global arrival time distributions referring to the arrival time of the shower core is only marginally enhanced as compared to local distributions referring to the arrival of the locally first muon.Comment: 24 pages, Journal Physics G accepte

    Implications of the cosmic ray spectrum for the mass composition at the highest energies

    Full text link
    The significant attenuation of the cosmic-ray flux above 51019\sim 5 10^{19} eV suggests that the observed high-energy spectrum is shaped by the so-called GZK effect. This interaction of ultra-high-energy cosmic rays (UHECRs) with the ambient radiation fields also affects their composition. We review the effect of photo-dissociation interactions on different nuclear species and analyze the phenomenology of secondary proton production as a function of energy. We show that, by itself, the UHECR spectrum does not constrain the cosmic-ray composition at their extragalactic sources. While the propagated composition (i.e., as observed at Earth) cannot contain significant amounts of intermediate mass nuclei (say between He and Si), whatever the source composition, and while it is vastly proton-dominated when protons are able to reach energies above 102010^{20} eV at the source, we show that the propagated composition can be dominated by Fe and sub-Fe nuclei at the highest energies, either if the sources are very strongly enriched in Fe nuclei (a rather improbable situation), or if the accelerated protons have a maximum energy of a few 101910^{19} eV at the sources. We also show that in the latter cases, the expected flux above 310203 10^{20} eV is very much reduced compared to the case when protons dominate in this energy range, both at the sources and at Earth.Comment: 16 pages, 7 figure

    Centaurus A: the one extragalactic source of cosmic rays with energies above the knee

    Full text link
    The origin of cosmic rays at all energies is still uncertain. In this paper we present and explore an astrophysical scenario to produce cosmic rays with energy ranging from below 101510^{15} o 3×10203 \times 10^{20} eV. We show here that just our Galaxy and the radio galaxy Cen A, each with their own galactic cosmic ray particles, but with those from the radio galaxy pushed up in energy by a relativistic shock in the jet emanating from the active black hole, are sufficient to describe the most recent data in the energy range PeV to near ZeV. Data are available over this entire energy range from the experiments KASCADE, KASCADE-Grande and Pierre Auger Observatory. The energy spectrum calculated here correctly reproduces the measured spectrum beyond the knee, and contrary to widely held expectations, no other extragalactic source population is required to explain the data, even at energies far below the general cutoff expected at 6×10196 \times 10^{19} eV, the Greisen-Zatsepin-Kuzmin turn-off due to interaction with the cosmological microwave background. We present several predictions for the source population, the cosmic ray composition and the propagation to Earth which can be tested in the near future

    KASCADE-Grande Limits on the Isotropic Diffuse Gamma-Ray Flux between 100 TeV and 1 EeV

    Get PDF
    KASCADE and KASCADE-Grande were multi-detector installations to measure individual air showers of cosmic rays at ultra-high energy. Based on data sets measured by KASCADE and KASCADE-Grande, 90% C.L. upper limits to the flux of gamma-rays in the primary cosmic ray flux are determined in an energy range of 10141018{10}^{14} - {10}^{18} eV. The analysis is performed by selecting air showers with a low muon content as expected for gamma-ray-induced showers compared to air showers induced by energetic nuclei. The best upper limit of the fraction of gamma-rays to the total cosmic ray flux is obtained at 3.7×10153.7 \times {10}^{15} eV with 1.1×1051.1 \times {10}^{-5}. Translated to an absolute gamma-ray flux this sets constraints on some fundamental astrophysical models, such as the distance of sources for at least one of the IceCube neutrino excess models.Comment: Published in The Astrophysical Journal, Volume 848, Number 1. Posted on: October 5, 201
    corecore